首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper we propose a new robust estimator in the context of two-stage estimation methods directed towards the correction of endogeneity problems in linear models. Our estimator is a combination of Huber estimators for each of the two stages, with scale corrections implemented using preliminary median absolute deviation estimators. In this way we obtain a two-stage estimation procedure that is an interesting compromise between concerns of simplicity of calculation, robustness and efficiency. This method compares well with other possible estimators such as two-stage least-squares (2SLS) and two-stage least-absolute-deviations (2SLAD), asymptotically and in finite samples. It is notably interesting to deal with contamination affecting more heavily the distribution tails than a few outliers and not losing as much efficiency as other popular estimators in that case, e.g. under normality. An additional originality resides in the fact that we deal with random regressors and asymmetric errors, which is not often the case in the literature on robust estimators.  相似文献   

2.
3.
A unified approach of parameter-estimation and goodness-of-fit testing is proposed. The new procedures may be applied to arbitrary laws with continuous distribution function. Specifically, both the method of estimation and the goodness-of-fit test are based on the idea of optimally transforming the original data to the uniform distribution, the criterion of optimality being an L2-type distance between the empirical characteristic function of the transformed data, and the characteristic function of the uniform (0,1)(0,1) distribution. Theoretical properties of the new estimators and tests are studied and some connections with classical statistics, moment-based procedures and non-parametric methods are investigated. Comparison with standard procedures via Monte Carlo is also included, along with a real-data application.  相似文献   

4.
5.
6.
In this paper, we investigate the estimation problem of the mixture proportion λλ in a nonparametric mixture model of the form λF(x)+(1-λ)G(x)λF(x)+(1-λ)G(x) using the minimum Hellinger distance approach, where F and G are two unknown distributions. We assume that data from the distributions F and G   as well as from the mixture distribution λF+(1-λ)GλF+(1-λ)G are available. We construct a minimum Hellinger distance estimator of λλ and study its asymptotic properties. The proposed estimator is chosen to minimize the Hellinger distance between a parametric mixture model and a nonparametric density estimator. We also develop a maximum likelihood estimator of λλ. Theoretical properties such as the existence, strong consistency, asymptotic normality and asymptotic efficiency of the proposed estimators are investigated. Robustness properties of the proposed estimator are studied using a Monte Carlo study. Two real data examples are also analyzed.  相似文献   

7.
We study moderate deviations for the maximum likelihood estimation of some inhomogeneous diffusions. The moderate deviation principle with explicit rate functions is obtained. Moreover, we apply our result to the parameter estimation in αα-Wiener bridges.  相似文献   

8.
9.
With reference to the problem of interval estimation of a population mean under model uncertainty, we compare approaches based on robust and empirical statistics via expected lengths of the associated confidence intervals. An explicit expression for confidence intervals arising from a general class of robust statistics is worked out and this is employed to obtain a higher order asymptotic formula for the expected lengths of such intervals. Comparative theoretical results, as well as a simulation study, are then presented.  相似文献   

10.
11.
We prove that the profile log-likelihood function for the removal method of estimating population size is unimodal. The result is obtained by a variation-diminishing property of the Laplace transform. An implication of this result is that the likelihood-ratio confidence region for the population size is always an interval. Necessary and sufficient conditions for the existence of a finite maximum-likelihood estimator are presented. We also present evidence that the likelihood-ratio confidence interval for the population size has acceptable small-sample coverage properties.  相似文献   

12.
13.
This article concerns the variance estimation in the central limit theorem for finite recurrent Markov chains. The associated variance is calculated in terms of the transition matrix of the Markov chain. We prove the equivalence of different matrix forms representing this variance. The maximum likelihood estimator for this variance is constructed and it is proved that it is strongly consistent and asymptotically normal. The main part of our analysis consists in presenting closed matrix forms for this new variance. Additionally, we prove the asymptotic equivalence between the empirical and the maximum likelihood estimation (MLE) for the stationary distribution.  相似文献   

14.
The class of joint mean‐covariance models uses the modified Cholesky decomposition of the within subject covariance matrix in order to arrive to an unconstrained, statistically meaningful reparameterisation. The new parameterisation of the covariance matrix has two sets of parameters that separately describe the variances and correlations. Thus, with the mean or regression parameters, these models have three sets of distinct parameters. In order to alleviate the problem of inefficient estimation and downward bias in the variance estimates, inherent in the maximum likelihood estimation procedure, the usual REML estimation procedure adjusts for the degrees of freedom lost due to the estimation of the mean parameters. Because of the parameterisation of the joint mean covariance models, it is possible to adapt the usual REML procedure in order to estimate the variance (correlation) parameters by taking into account the degrees of freedom lost by the estimation of both the mean and correlation (variance) parameters. To this end, here we propose adjustments to the estimation procedures based on the modified and adjusted profile likelihoods. The methods are illustrated by an application to a real data set and simulation studies. The Canadian Journal of Statistics 40: 225–242; 2012 © 2012 Statistical Society of Canada  相似文献   

15.
The mean vector associated with several independent variates from the exponential subclass of Hudson (1978) is estimated under weighted squared error loss. In particular, the formal Bayes and “Stein-like” estimators of the mean vector are given. Conditions are also given under which these estimators dominate any of the “natural estimators”. Our conditions for dominance are motivated by a result of Stein (1981), who treated the Np (θ, I) case with p ≥ 3. Stein showed that formal Bayes estimators dominate the usual estimator if the marginal density of the data is superharmonic. Our present exponential class generalization entails an elliptic differential inequality in some natural variables. Actually, we assume that each component of the data vector has a probability density function which satisfies a certain differential equation. While the densities of Hudson (1978) are particular solutions of this equation, other solutions are not of the exponential class if certain parameters are unknown. Our approach allows for the possibility of extending the parametric Stein-theory to useful nonexponential cases, but the problem of nuisance parameters is not treated here.  相似文献   

16.
This paper is concerned with semiparametric discrete kernel estimators when the unknown count distribution can be considered to have a general weighted Poisson form. The estimator is constructed by multiplying the Poisson estimate with a nonparametric discrete kernel-type estimate of the Poisson weight function. Comparisons are then carried out with the ordinary discrete kernel probability mass function estimators. The Poisson weight function is thus a local multiplicative correction factor, and is considered as the uniform measure to detect departures from the equidispersed Poisson distribution. In this way, the effects of dispersion and zero-proportion with respect to the standard Poisson distribution are also minimized. This method of estimation is also applied to the weighted binomial form for the count distribution having a finite support. The proposed estimators, in addition to being simple, easy-to-implement and effective, also outperform the competing nonparametric and parametric estimators in finite-sample situations. Two examples illustrate this new semiparametric estimation.  相似文献   

17.
Efficiency and robustness are two fundamental concepts in parametric estimation problems. It was long thought that there was an inherent contradiction between the aims of achieving robustness and efficiency; that is, a robust estimator could not be efficient and vice versa. It is now known that the minimum Hellinger distance approached introduced by Beran [R. Beran, Annals of Statistics 1977;5:445–463] is one way of reconciling the conflicting concepts of efficiency and robustness. For parametric models, it has been shown that minimum Hellinger estimators achieve efficiency at the model density and simultaneously have excellent robustness properties. In this article, we examine the application of this approach in two semiparametric models. In particular, we consider a two‐component mixture model and a two‐sample semiparametric model. In each case, we investigate minimum Hellinger distance estimators of finite‐dimensional Euclidean parameters of particular interest and study their basic asymptotic properties. Small sample properties of the proposed estimators are examined using a Monte Carlo study. The results can be extended to semiparametric models of general form as well. The Canadian Journal of Statistics 37: 514–533; 2009 © 2009 Statistical Society of Canada  相似文献   

18.
The problem of combining coordinates in Stein-type estimators, when simultaneously estimating normal means, is considered. The question of deciding whether to use all coordinates in one combined shrinkage estimator or to separate into groups and use separate shrinkage estimators on each group is considered. A Bayesian viewpoint is (of necessity) taken, and it is shown that the ‘combined’ estimator is, somewhat surprisingly, often superior.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号