首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased conditions from non‐diseased conditions. For a continuous‐scale diagnostic test, a popular summary index of the receiver operating characteristic (ROC) curve is the area under the curve (AUC). However, when our focus is on a certain region of false positive rates, we often use the partial AUC instead. In this paper we have derived the asymptotic normal distribution for the non‐parametric estimator of the partial AUC with an explicit variance formula. The empirical likelihood (EL) ratio for the partial AUC is defined and it is shown that its limiting distribution is a scaled chi‐square distribution. Hybrid bootstrap and EL confidence intervals for the partial AUC are proposed by using the newly developed EL theory. We also conduct extensive simulation studies to compare the relative performance of the proposed intervals and existing intervals for the partial AUC. A real example is used to illustrate the application of the recommended intervals. The Canadian Journal of Statistics 39: 17–33; 2011 © 2011 Statistical Society of Canada  相似文献   

4.
5.
In survey sampling, policy decisions regarding the allocation of resources to sub‐groups of a population depend on reliable predictors of their underlying parameters. However, in some sub‐groups, called small areas due to small sample sizes relative to the population, the information needed for reliable estimation is typically not available. Consequently, data on a coarser scale are used to predict the characteristics of small areas. Mixed models are the primary tools in small area estimation (SAE) and also borrow information from alternative sources (e.g., previous surveys and administrative and census data sets). In many circumstances, small area predictors are associated with location. For instance, in the case of chronic disease or cancer, it is important for policy makers to understand spatial patterns of disease in order to determine small areas with high risk of disease and establish prevention strategies. The literature considering SAE with spatial random effects is sparse and mostly in the context of spatial linear mixed models. In this article, small area models are proposed for the class of spatial generalized linear mixed models to obtain small area predictors and corresponding second‐order unbiased mean squared prediction errors via Taylor expansion and a parametric bootstrap approach. The performance of the proposed approach is evaluated through simulation studies and application of the models to a real esophageal cancer data set from Minnesota, U.S.A. The Canadian Journal of Statistics 47: 426–437; 2019 © 2019 Statistical Society of Canada  相似文献   

6.
Small area estimation has received considerable attention in recent years because of growing demand for small area statistics. Basic area‐level and unit‐level models have been studied in the literature to obtain empirical best linear unbiased prediction (EBLUP) estimators of small area means. Although this classical method is useful for estimating the small area means efficiently under normality assumptions, it can be highly influenced by the presence of outliers in the data. In this article, the authors investigate the robustness properties of the classical estimators and propose a resistant method for small area estimation, which is useful for downweighting any influential observations in the data when estimating the model parameters. To estimate the mean squared errors of the robust estimators of small area means, a parametric bootstrap method is adopted here, which is applicable to models with block diagonal covariance structures. Simulations are carried out to study the behaviour of the proposed robust estimators in the presence of outliers, and these estimators are also compared to the EBLUP estimators. Performance of the bootstrap mean squared error estimator is also investigated in the simulation study. The proposed robust method is also applied to some real data to estimate crop areas for counties in Iowa, using farm‐interview data on crop areas and LANDSAT satellite data as auxiliary information. The Canadian Journal of Statistics 37: 381–399; 2009 © 2009 Statistical Society of Canada  相似文献   

7.
In this article, we address the testing problem for additivity in nonparametric regression models. We develop a kernel‐based consistent test of a hypothesis of additivity in nonparametric regression, and establish its asymptotic distribution under a sequence of local alternatives. Compared to other existing kernel‐based tests, the proposed test is shown to effectively ameliorate the influence from estimation bias of the additive component of the nonparametric regression, and hence increase its efficiency. Most importantly, it avoids the tuning difficulties by using estimation‐based optimal criteria, while there is no direct tuning strategy for other existing kernel‐based testing methods. We discuss the usage of the new test and give numerical examples to demonstrate the practical performance of the test. The Canadian Journal of Statistics 39: 632–655; 2011. © 2011 Statistical Society of Canada  相似文献   

8.
Many methods have been developed for the nonparametric estimation of a mean response function, but most of these methods do not lend themselves to simultaneous estimation of the mean response function and its derivatives. Recovering derivatives is important for analyzing human growth data, studying physical systems described by differential equations, and characterizing nanoparticles from scattering data. In this article the authors propose a new compound estimator that synthesizes information from numerous pointwise estimators indexed by a discrete set. Unlike spline and kernel smooths, the compound estimator is infinitely differentiable; unlike local regression smooths, the compound estimator is self‐consistent in that its derivatives estimate the derivatives of the mean response function. The authors show that the compound estimator and its derivatives can attain essentially optimal convergence rates in consistency. The authors also provide a filtration and extrapolation enhancement for finite samples, and the authors assess the empirical performance of the compound estimator and its derivatives via a simulation study and an application to real data. The Canadian Journal of Statistics 39: 280–299; 2011 © 2011 Statistical Society of Canada  相似文献   

9.
In this study, we consider the problem of selecting explanatory variables of fixed effects in linear mixed models under covariate shift, which is when the values of covariates in the model for prediction differ from those in the model for observed data. We construct a variable selection criterion based on the conditional Akaike information introduced by Vaida & Blanchard (2005). We focus especially on covariate shift in small area estimation and demonstrate the usefulness of the proposed criterion. In addition, numerical performance is investigated through simulations, one of which is a design‐based simulation using a real dataset of land prices. The Canadian Journal of Statistics 46: 316–335; 2018 © 2018 Statistical Society of Canada  相似文献   

10.
11.
12.
13.
In survey sampling, policymaking regarding the allocation of resources to subgroups (called small areas) or the determination of subgroups with specific properties in a population should be based on reliable estimates. Information, however, is often collected at a different scale than that of these subgroups; hence, the estimation can only be obtained on finer scale data. Parametric mixed models are commonly used in small‐area estimation. The relationship between predictors and response, however, may not be linear in some real situations. Recently, small‐area estimation using a generalised linear mixed model (GLMM) with a penalised spline (P‐spline) regression model, for the fixed part of the model, has been proposed to analyse cross‐sectional responses, both normal and non‐normal. However, there are many situations in which the responses in small areas are serially dependent over time. Such a situation is exemplified by a data set on the annual number of visits to physicians by patients seeking treatment for asthma, in different areas of Manitoba, Canada. In cases where covariates that can possibly predict physician visits by asthma patients (e.g. age and genetic and environmental factors) may not have a linear relationship with the response, new models for analysing such data sets are required. In the current work, using both time‐series and cross‐sectional data methods, we propose P‐spline regression models for small‐area estimation under GLMMs. Our proposed model covers both normal and non‐normal responses. In particular, the empirical best predictors of small‐area parameters and their corresponding prediction intervals are studied with the maximum likelihood estimation approach being used to estimate the model parameters. The performance of the proposed approach is evaluated using some simulations and also by analysing two real data sets (precipitation and asthma).  相似文献   

14.
15.
In this article, we develop regression models with cross‐classified responses. Conditional independence structures can be explored/exploited through the selective inclusion/exclusion of terms in a certain functional ANOVA decomposition, and the estimation is done nonparametrically via the penalized likelihood method. A cohort of computational and data analytical tools are presented, which include cross‐validation for smoothing parameter selection, Kullback–Leibler projection for model selection, and Bayesian confidence intervals for odds ratios. Random effects are introduced to model possible correlations such as those found in longitudinal and clustered data. Empirical performances of the methods are explored in simulation studies of limited scales, and a real data example is presented using some eyetracking data from linguistic studies. The techniques are implemented in a suite of R functions, whose usage is briefly described in the appendix. The Canadian Journal of Statistics 39: 591–609; 2011. © 2011 Statistical Society of Canada  相似文献   

16.
17.
We propose an efficient and robust method for variance function estimation in semiparametric longitudinal data analysis. The method utilizes a local log‐linear approximation for the variance function and adopts a generalized estimating equation approach to account for within subject correlations. We show theoretically and empirically that our method outperforms estimators using working independence that ignores the correlations. The Canadian Journal of Statistics 39: 656–670; 2011. © 2011 Statistical Society of Canada  相似文献   

18.
19.
Explicit expressions for Bayes invariant quadratic estimates, biased and unbiased, are presented and proved to cover the entire class of admissible estimates in the considered classes. An unbalanced genetic model is studied for demonstration.  相似文献   

20.
We consider the maximum likelihood estimator $\hat{F}_n$ of a distribution function in a class of deconvolution models where the known density of the noise variable is of bounded variation. This class of noise densities contains in particular bounded, decreasing densities. The estimator $\hat{F}_n$ is defined, characterized in terms of Fenchel optimality conditions and computed. Under appropriate conditions, various consistency results for $\hat{F}_n$ are derived, including uniform strong consistency. The Canadian Journal of Statistics 41: 98–110; 2013 © 2012 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号