首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models that involve an outcome variable, covariates, and latent variables are frequently the target for estimation and inference. The presence of missing covariate or outcome data presents a challenge, particularly when missingness depends on the latent variables. This missingness mechanism is called latent ignorable or latent missing at random and is a generalisation of missing at random. Several authors have previously proposed approaches for handling latent ignorable missingness, but these methods rely on prior specification of the joint distribution for the complete data. In practice, specifying the joint distribution can be difficult and/or restrictive. We develop a novel sequential imputation procedure for imputing covariate and outcome data for models with latent variables under latent ignorable missingness. The proposed method does not require a joint model; rather, we use results under a joint model to inform imputation with less restrictive modelling assumptions. We discuss identifiability and convergence‐related issues, and simulation results are presented in several modelling settings. The method is motivated and illustrated by a study of head and neck cancer recurrence. Imputing missing data for models with latent variables under latent‐dependent missingness without specifying a full joint model.  相似文献   

2.
基于聚类关联规则的缺失数据处理研究   总被引:2,自引:1,他引:2       下载免费PDF全文
 本文提出了基于聚类和关联规则的缺失数据处理新方法,通过聚类方法将含有缺失数据的数据集相近的记录归到一类,然后利用改进后的关联规则方法对各子数据集挖掘变量间的关联性,并利用这种关联性来填补缺失数据。通过实例分析,发现该方法对缺失数据处理,尤其是海量数据集具有较好的效果。  相似文献   

3.
We consider the problem of full information maximum likelihood (FIML) estimation in factor analysis when a majority of the data values are missing. The expectation–maximization (EM) algorithm is often used to find the FIML estimates, in which the missing values on manifest variables are included in complete data. However, the ordinary EM algorithm has an extremely high computational cost. In this paper, we propose a new algorithm that is based on the EM algorithm but that efficiently computes the FIML estimates. A significant improvement in the computational speed is realized by not treating the missing values on manifest variables as a part of complete data. When there are many missing data values, it is not clear if the FIML procedure can achieve good estimation accuracy. In order to investigate this, we conduct Monte Carlo simulations under a wide variety of sample sizes.  相似文献   

4.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

5.
Summary.  Social surveys are usually affected by item and unit non-response. Since it is unlikely that a sample of respondents is a random sample, social scientists should take the missing data problem into account in their empirical analyses. Typically, survey methodologists try to simplify the work of data users by 'completing' the data, filling the missing variables through imputation. The aim of the paper is to give data users some guidelines on how to assess the effects of imputation on their microlevel analyses. We focus attention on the potential bias that is caused by imputation in the analysis of income variables, using the European Community Household Panel as an illustration.  相似文献   

6.
The analysis of incomplete contingency tables is a practical and an interesting problem. In this paper, we provide characterizations for the various missing mechanisms of a variable in terms of response and non-response odds for two and three dimensional incomplete tables. Log-linear parametrization and some distinctive properties of the missing data models for the above tables are discussed. All possible cases in which data on one, two or all variables may be missing are considered. We study the missingness of each variable in a model, which is more insightful for analyzing cross-classified data than the missingness of the outcome vector. For sensitivity analysis of the incomplete tables, we propose easily verifiable procedures to evaluate the missing at random (MAR), missing completely at random (MCAR) and not missing at random (NMAR) assumptions of the missing data models. These methods depend only on joint and marginal odds computed from fully and partially observed counts in the tables, respectively. Finally, some real-life datasets are analyzed to illustrate our results, which are confirmed based on simulation studies.  相似文献   

7.
Three-mode analysis is a generalization of principal component analysis to three-mode data. While two-mode data consist of cases that are measured on several variables, three-mode data consist of cases that are measured on several variables at several occasions. As any other statistical technique, the results of three-mode analysis may be influenced by missing data. Three-mode software packages generally use the expectation–maximization (EM) algorithm for dealing with missing data. However, there are situations in which the EM algorithm is expected to break down. Alternatively, multiple imputation may be used for dealing with missing data. In this study we investigated the influence of eight different multiple-imputation methods on the results of three-mode analysis, more specifically, a Tucker2 analysis, and compared the results with those of the EM algorithm. Results of the simulations show that multilevel imputation with the mode with the most levels nested within cases and the mode with the least levels represented as variables gives the best results for a Tucker2 analysis. Thus, this may be a good alternative for the EM algorithm in handling missing data in a Tucker2 analysis.  相似文献   

8.
Latent class analysis (LCA) has been found to have important applications in social and behavioural sciences for modelling categorical response variables, and non-response is typical when collecting data. In this study, the non-response mainly included ‘contingency questions’ and real ‘missing data’. The primary objective of this study was to evaluate the effects of some potential factors on model selection indices in LCA with non-response data. We simulated missing data with contingency question and evaluated the accuracy rates of eight information criteria for selecting the correct models. The results showed that the main factors are latent class proportions, conditional probabilities, sample size, the number of items, the missing data rate and the contingency data rate. Interactions of the conditional probabilities with class proportions, sample size and the number of items are also significant. From our simulation results, the impact of missing data and contingency questions can be amended by increasing the sample size or the number of items.  相似文献   

9.
This paper considers the estimation of coefficients in a linear regression model with missing observations in the independent variables and introduces a modification of the standard first order regression method for imputation of missing values. The modification provides stochastic values for imputation and, as an extension, makes use of the principle of weighted mixed regression. The proposed procedures are compared with two popular procedures—one which utilizes only the complete observations and the other which employs the standard first order regression imputation method for missing values. A simulation experiment to evaluate the gain in efficiency and to examine interesting issues like the impact of varying degree of multicollinearity in explanatory variables is proceeded. Some work on the case of discrete regressor variables is in progress and will be reported in a future article to follow.  相似文献   

10.
Bayesian networks for imputation   总被引:1,自引:0,他引:1  
Summary.  Bayesian networks are particularly useful for dealing with high dimensional statistical problems. They allow a reduction in the complexity of the phenomenon under study by representing joint relationships between a set of variables through conditional relationships between subsets of these variables. Following Thibaudeau and Winkler we use Bayesian networks for imputing missing values. This method is introduced to deal with the problem of the consistency of imputed values: preservation of statistical relationships between variables ( statistical consistency ) and preservation of logical constraints in data ( logical consistency ). We perform some experiments on a subset of anonymous individual records from the 1991 UK population census.  相似文献   

11.
In the analysis of time-to-event data with multiple causes using a competing risks Cox model, often the cause of failure is unknown for some of the cases. The probability of a missing cause is typically assumed to be independent of the cause given the time of the event and covariates measured before the event occurred. In practice, however, the underlying missing-at-random assumption does not necessarily hold. Motivated by colorectal cancer molecular pathological epidemiology analysis, we develop a method to conduct valid analysis when additional auxiliary variables are available for cases only. We consider a weaker missing-at-random assumption, with missing pattern depending on the observed quantities, which include the auxiliary covariates. We use an informative likelihood approach that will yield consistent estimates even when the underlying model for missing cause of failure is misspecified. The superiority of our method over naive methods in finite samples is demonstrated by simulation study results. We illustrate the use of our method in an analysis of colorectal cancer data from the Nurses’ Health Study cohort, where, apparently, the traditional missing-at-random assumption fails to hold.  相似文献   

12.
Summary.  We consider three sorts of diagnostics for random imputations: displays of the completed data, which are intended to reveal unusual patterns that might suggest problems with the imputations, comparisons of the distributions of observed and imputed data values and checks of the fit of observed data to the model that is used to create the imputations. We formulate these methods in terms of sequential regression multivariate imputation, which is an iterative procedure in which the missing values of each variable are randomly imputed conditionally on all the other variables in the completed data matrix. We also consider a recalibration procedure for sequential regression imputations. We apply these methods to the 2002 environmental sustainability index, which is a linear aggregation of 64 environmental variables on 142 countries.  相似文献   

13.
This paper shows that, when variables with missing values are linearly related to observed variables, the normal-distribution-based pseudo MLEs are still consistent. The population distribution may be unknown while the missing data process can follow an arbitrary missing at random mechanism. Enough details are provided for the bivariate case so that readers having taken a course in statistics/probability can fully understand the development. Sufficient conditions for the consistency of the MLEs in higher dimensions are also stated, while the details are omitted.  相似文献   

14.
We discuss the case of the multivariate linear model Y = XB + E with Y an (n × p) matrix, and so on, when there are missing observations in the Y matrix in a so-called nested pattern. We propose an analysis that arises by incorporating the predictive density of the missing observations in determining the posterior distribution of B, and its mean and variance matrix. This involves us with matric-T variables. The resulting analysis is illustrated with some Canadian economic data.  相似文献   

15.
Semiparametric models provide a more flexible form for modeling the relationship between the response and the explanatory variables. On the other hand in the literature of modeling for the missing variables, canonical form of the probability of the variable being missing (p) is modeled taking a fully parametric approach. Here we consider a regression spline based semiparametric approach to model the missingness mechanism of nonignorably missing covariates. In this model the relationship between the suitable canonical form of p (e.g. probit p) and the missing covariate is modeled through several splines. A Bayesian procedure is developed to efficiently estimate the parameters. A computationally advantageous prior construction is proposed for the parameters of the semiparametric part. A WinBUGS code is constructed to apply Gibbs sampling to obtain the posterior distributions. We show through an extensive Monte Carlo simulation experiment that response model coefficent estimators maintain better (when the true missingness mechanism is nonlinear) or equivalent (when the true missingness mechanism is linear) bias and efficiency properties with the use of proposed semiparametric missingness model compared to the conventional model.  相似文献   

16.
Multivariate extreme events are typically modelled using multivariate extreme value distributions. Unfortunately, there exists no finite parametrization for the class of multivariate extreme value distributions. One common approach is to model extreme events using some flexible parametric subclass. This approach has been limited to only two or three dimensions, primarily because suitably flexible high-dimensional parametric models have prohibitively complex density functions. We present an approach that allows a number of popular flexible models to be used in arbitrarily high dimensions. The approach easily handles missing and censored data, and can be employed when modelling componentwise maxima and multivariate threshold exceedances. The approach is based on a representation using conditionally independent marginal components, conditioning on positive stable random variables. We use Bayesian inference, where the conditioning variables are treated as auxiliary variables within Markov chain Monte Carlo simulations. We demonstrate these methods with an application to sea-levels, using data collected at 10 sites on the east coast of England.  相似文献   

17.
Tree-based models (TBMs) can substitute missing data using the surrogate approach (SUR). The aim of this study is to compare the performance of statistical imputation against the performance of SUR in TBMs. Employing empirical data, a TBM was constructed. Thereafter, 10%, 20%, and 40% of variable values appeared as the first split was deleted, and imputed with and without the use of outcome variables in the imputation model (IMP? and IMP+). This was repeated one thousand times. Absolute relative bias above 0.10 was defined as sever (SARB). Subsequently, in a series of simulations, the following parameters were changed: the degree of correlation among variables, the number of variables truly associated with the outcome, and the missing rate. At a 10% missing rate, the proportion of times SARB was observed in either SUR or IMP? was two times higher than in IMP+ (28% versus 13%). When the missing rate was increased to 20%, all these proportions were approximately doubled. Irrespective of the missing rate, IMP+ was about 65% less likely to produce SARB than SUR. Results of IMP? and SUR were comparable up to a 20% missing rate. At a high missing rate, IMP? was 76% more likely to provide SARB estimates. Statistical imputation of missing data and the use of outcome variable in the imputation model is recommended, even in the content of TBM.  相似文献   

18.
Multiple imputation has emerged as a popular approach to handling data sets with missing values. For incomplete continuous variables, imputations are usually produced using multivariate normal models. However, this approach might be problematic for variables with a strong non-normal shape, as it would generate imputations incoherent with actual distributions and thus lead to incorrect inferences. For non-normal data, we consider a multivariate extension of Tukey's gh distribution/transformation [38] to accommodate skewness and/or kurtosis and capture the correlation among the variables. We propose an algorithm to fit the incomplete data with the model and generate imputations. We apply the method to a national data set for hospital performance on several standard quality measures, which are highly skewed to the left and substantially correlated with each other. We use Monte Carlo studies to assess the performance of the proposed approach. We discuss possible generalizations and give some advices to practitioners on how to handle non-normal incomplete data.  相似文献   

19.
Quantitle regression (QR) is a popular approach to estimate functional relations between variables for all portions of a probability distribution. Parameter estimation in QR with missing data is one of the most challenging issues in statistics. Regression quantiles can be substantially biased when observations are subject to missingness. We study several inverse probability weighting (IPW) estimators for parameters in QR when covariates or responses are subject to missing not at random. Maximum likelihood and semiparametric likelihood methods are employed to estimate the respondent probability function. To achieve nice efficiency properties, we develop an empirical likelihood (EL) approach to QR with the auxiliary information from the calibration constraints. The proposed methods are less sensitive to misspecified missing mechanisms. Asymptotic properties of the proposed IPW estimators are shown under general settings. The efficiency gain of EL-based IPW estimator is quantified theoretically. Simulation studies and a data set on the work limitation of injured workers from Canada are used to illustrated our proposed methodologies.  相似文献   

20.
This paper addresses the problem of detecting a mixture of parallel regression lines when information about group member¬ship of individual cases is not given. The problem is approached as a missing variable problem, with the missing variables being the dummy variables that code for groups. If a mixture of par¬allel regression lines with normally distributed error terms is present, a simple regression model without dummy variables will produce residuals that follow approximately a mixed normal dis¬tribution. In a simulation studyr several goodness-of-fit tests of normality were used to test the residuals obtained from mis-specified models that excluded dummy variables, Factors varied in the simulation included the number and the separation of the parallel lines and the sample size, The goodness-of-fit test based on the sample kurtosis (82) was overall most powerful in detecting mixtures of parallel regression lines, Applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号