首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the problem of selecting the best population from among k(≥ 2) two-parameter exponential populations. New selection procedures are proposed for selecting the unique best. The procedures include preliminary tests which allow the xperimenter to have an option to not select if the statistical evidence is not significant. Two probabilities, the probability to make a selection and the probability of a correct selection, are controlled by these selection procedures. Comparisons between the proposed selection procedures and certain earlier existing procedures are also made. The results show the superiority of the proposed selection procedures in terms of the required sample size.  相似文献   

2.
In the problem of selecting the best of k populations, Olkin, Sobel, and Tong (1976) have introduced the idea of estimating the probability of correct selection. In an attempt to improve on their estimator we consider anempirical Bayes approach. We compare the two estimators via analytic results and a simulation study.  相似文献   

3.
Selection from k independent populations of the t (< k) populations with the smallest scale parameters has been considered under the Indifference Zone approach by Bechhofer k Sobel (1954). The same problem has been considered under the Subset Selection approach by Gupta & Sobel (1962a) for the normal variances case and by Carroll, Gupta & Huang (1975) for the more general case of stochastically increasing distributions. This paper uses the Subset Selection approach to place confidence bounds on the probability of selecting all “good” populations, or only “good” populations, for the Case of scale parameters, where a “good” population is defined to have one of the t smallest scale parameters. This is an extension of the location parameter results obtained by Bofinger & Mengersen (1986). Special results are obtained for the case of selecting normal populations based on variances and the necessary tables are presented.  相似文献   

4.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

5.
The goal of the indifference zone formulation of selection (Bechhofer, 1954) consists of selecting the t best variants out of k variants with a probability of at least 1 − β if the parameter difference between the t ‘good’ variants and the kt ‘bad’ variants is not less than Δ. A review of generalized selection goals not using this difference condition is presented. Within some general classes of distributions, the suitable experimental designs for all these selection goals are identical. Similar results are described for the problem of selecting the best variant in comparison with a control, or standard.  相似文献   

6.
Consider k( ? 2) normal populations with unknown means μ1, …, μk, and a common known variance σ2. Let μ[1] ? ??? ? μ[k] denote the ordered μi.The populations associated with the t(1 ? t ? k ? 1) largest means are called the t best populations. Hsu and Panchapakesan (2004) proposed and investigated a procedure RHPfor selecting a non empty subset of the k populations whose size is at most m(1 ? m ? k ? t) so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whenever μ[k ? t + 1] ? μ[k ? t] ? δ*, where P*?and?δ* are specified in advance of the experiment. This probability requirement is known as the indifference-zone probability requirement. In the present article, we investigate the same procedure RHP for the same goal as before but when k ? t < m ? k ? 1 so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whatever be the configuration of the unknown μi. The probability requirement in this latter case is termed the subset selection probability requirement. Santner (1976) proposed and investigated a different procedure (RS) based on samples of size n from each of the populations, considering both cases, 1 ? m ? k ? t and k ? t < m ? k. The special case of t = 1 was earlier studied by Gupta and Santner (1973) and Hsu and Panchapakesan (2002) for their respective procedures.  相似文献   

7.
Contours may be viewed as the 2D outline of the image of an object. This type of data arises in medical imaging as well as in computer vision and can be modeled as data on a manifold and can be studied using statistical shape analysis. Practically speaking, each observed contour, while theoretically infinite dimensional, must be discretized for computations. As such, the coordinates for each contour as obtained at k sampling times, resulting in the contour being represented as a k-dimensional complex vector. While choosing large values of k will result in closer approximations to the original contour, this will also result in higher computational costs in the subsequent analysis. The goal of this study is to determine reasonable values for k so as to keep the computational cost low while maintaining accuracy. To do this, we consider two methods for selecting sample points and determine lower bounds for k for obtaining a desired level of approximation error using two different criteria. Because this process is computationally inefficient to perform on a large scale, we then develop models for predicting the lower bounds for k based on simple characteristics of the contours.  相似文献   

8.
A class of invariant Bayes rules is derived for testing homogeneity of k (≥2) different populations against (kt) slippage alternatives that some (unknown) subset of size t of the given populations has parameter larger than the remaining k-t, where t is a given integer between 1 and k-1. For a similar problem in nonparametric situations, locally best tests based on ranks are derived.  相似文献   

9.
Various strategies are investigated for selecting one of two medical treatments when patients may be divided into k ≥ 2 categories on the basis of their expected differences in response to the two treatments. The strategies compared are (1) k independent decisions, (2) a single overall decision made on the basis of simple pooling, and (3) the Bayes strategy. The optimal clinical trial size is supplied for each strategy, and conditions delineated under which each of the strategies is to be preferred.  相似文献   

10.
ABSTRACT

Suppose independent random samples are available from k(k ≥ 2) exponential populations ∏1,…,∏ k with a common location θ and scale parameters σ1,…,σ k , respectively. Let X i and Y i denote the minimum and the mean, respectively, of the ith sample, and further let X = min{X 1,…, X k } and T i  = Y i  ? X; i = 1,…, k. For selecting a nonempty subset of {∏1,…,∏ k } containing the best population (the one associated with max{σ1,…,σ k }), we use the decision rule which selects ∏ i if T i  ≥ c max{T 1,…,T k }, i = 1,…, k. Here 0 < c ≤ 1 is chosen so that the probability of including the best population in the selected subset is at least P* (1/k ≤ P* < 1), a pre-assigned level. The problem is to estimate the average worth W of the selected subset, the arithmetic average of means of selected populations. In this article, we derive the uniformly minimum variance unbiased estimator (UMVUE) of W. The bias and risk function of the UMVUE are compared numerically with those of analogs of the best affine equivariant estimator (BAEE) and the maximum likelihood estimator (MLE).  相似文献   

11.
The objective of this paper is to investigate through simulation the possible presence of the incidental parameters problem when performing frequentist model discrimination with stratified data. In this context, model discrimination amounts to considering a structural parameter taking values in a finite space, with k points, k≥2. This setting seems to have not yet been considered in the literature about the Neyman–Scott phenomenon. Here we provide Monte Carlo evidence of the severity of the incidental parameters problem also in the model discrimination setting and propose a remedy for a special class of models. In particular, we focus on models that are scale families in each stratum. We consider traditional model selection procedures, such as the Akaike and Takeuchi information criteria, together with the best frequentist selection procedure based on maximization of the marginal likelihood induced by the maximal invariant, or of its Laplace approximation. Results of two Monte Carlo experiments indicate that when the sample size in each stratum is fixed and the number of strata increases, correct selection probabilities for traditional model selection criteria may approach zero, unlike what happens for model discrimination based on exact or approximate marginal likelihoods. Finally, two examples with real data sets are given.  相似文献   

12.
G = F k (k > 1); G = 1 − (1−F) k (k < 1); G = F k (k < 1); and G = 1 − (1−F) k (k > 1), where F and G are two continuous cumulative distribution functions. If an optimal precedence test (one with the maximal power) is determined for one of these four classes, the optimal tests for the other classes of alternatives can be derived. Application of this is given using the results of Lin and Sukhatme (1992) who derived the best precedence test for testing the null hypothesis that the lifetimes of two types of items on test have the same distibution. The test has maximum power for fixed κ in the class of alternatives G = 1 − (1−F) k , with k < 1. Best precedence tests for the other three classes of Lehmann-type alternatives are derived using their results. Finally, a comparison of precedence tests with Wilcoxon's two-sample test is presented. Received: February 22, 1999; revised version: June 7, 2000  相似文献   

13.
The two parameter Gamma distribution is widely used for modeling lifetime distributions in reliability theory. There is much literature on the inference on the individual parameters of the Gamma distribution, namely the shape parameter k and the scale parameter θ when the other parameter is known. However, usually the reliability professionals have a major interest in making statistical inference about the mean lifetime μ, which equals the product θk for the Gamma distribution. The problem of inference on the mean μ when both parameters θ and k are unknown has been less attended in the literature for the Gamma distribution. In this paper we review the existing methods for interval estimation of μ. A comparative study in this paper indicates that the existing methods are either too approximate and yield less reliable confidence intervals or are computationally quite complicated and need advanced computing facilities. We propose a new simple method for interval estimation of the Gamma mean and compare its performance with the existing methods. The comparative study showed that the newly proposed computationally simple optimum power normal approximation method works best even for small sample sizes.  相似文献   

14.
Consider k independent observations Yi (i= 1,., k) from two-parameter exponential populations i with location parameters μ and the same scale parameter If the μi are ranked as consider population as the “worst” population and IIp(k) as the “best” population (with some tagging so that p{) and p(k) are well defined in the case of equalities). If the Yi are ranked as we consider the procedure, “Select provided YR(k) Yr(k) is sufficiently large so that is demonstrably better than the other populations.” A similar procedure is studied for selecting the “demonstrably worst” population.  相似文献   

15.
Summary: A class of selection procedures for selecting the least dispersive distribution from k available distributions has been proposed. This problem finds applications in reliability and engineering. In engineering, for example, the goal of the experimenter is to select a firm whose components have least dispersive distribution from the available set of competing firms manufacturing the components of the desired specifications meant for the same purpose. The proposed procedures can be used even when the underlying distributions belong to different families. Applications of the proposed selection procedures are discussed by taking exponential, gamma and Lehmann type distributions. Performance of the proposed selection procedures is assessed through simulation study. Implementation of the proposed selection procedure is illustrated through an example. * The authors are very grateful to the editor and referees for their valuable comments.  相似文献   

16.
In this paper we establish an optimal asymptotic linear predictor which does not involve the finite-sample variance-covariance structure. Extensions to the problem of finding the best linear unbiased and simple linear unbiased predictors for k samples are given. Moreover, we obtain alternative linear predictors by modifying the covariance matrix by either an identity matrix or a diagonal matrix. For normal, logistic and Rayleigh samples of size 10, the alternative linear predictors with these modifications have high efficiency when compared with the best linear unbiased predictor.  相似文献   

17.
In this article, lower bounds for expected sample size of sequential selection procedures are constructed for the problem of selecting the most probable event of k-variate multinomial distribution. The study is based on Volodin’s universal lower bounds for expected sample size of statistical inference procedures. The obtained lower bounds are used to estimate the efficiency of some selection procedures in terms of their expected sample sizes.  相似文献   

18.
The problem of finding D-optimal or D-efficient designs in the presence of covariates is considered under a completely randomized design set-up with v treatments, k covariates and N experimental units. In contrast to Lopes Troya [Lopes Troya, J., 1982, Optimal designs for covariates models. Journal of Statistical Planning and Inference, 6, 373–419.], who considered this problem in the equireplicate case, we do not assume that N/v is an integer, and this allows us to study situations where no equireplicate design exists. Even when N/v is an integer, it is seen quite counter-intuitively that there are situations where a non-equireplicate design outperforms the best equireplicate design under the D-criterion.  相似文献   

19.
This paper deals with the problem of finding saturated designs for multivariate cubic regression on a cube which are nearly D-optimal. A finite class of designs is presented for the k dimensional cube having the property that the sequence of the best designs in this class for each k is asymptotically efficient as k increases. A method for constructing good designs in this class is discussed and the construction is carried out for 1?k?8. These numerical results are presented in the last section of the paper.  相似文献   

20.
Given k( ? 3) independent normal populations with unknown means and unknown and unequal variances, a single-stage sampling procedure to select the best t out of k populations is proposed and the procedure is completely independent of the unknown means and the unknown variances. For various combinations of k and probability requirement, tables of procedure parameters are provided for practitioners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号