首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models for geostatistical data introduce spatial dependence in the covariance matrix of location-specific random effects. This is usually defined to be a parametric function of the distances between locations. Bayesian formulations of such models overcome asymptotic inference and estimation problems involved in maximum likelihood-based approaches and can be fitted using Markov chain Monte Carlo (MCMC) simulation. The MCMC implementation, however, requires repeated inversions of the covariance matrix which makes the problem computationally intensive, especially for large number of locations. In the present work, we propose to convert the spatial covariance matrix to a sparse matrix and compare a number of numerical algorithms especially suited within the MCMC framework in order to accelerate large matrix inversion. The algorithms are assessed empirically on simulated datasets of different size and sparsity. We conclude that the band solver applied after ordering the distance matrix reduces the computational time in inverting covariance matrices substantially.  相似文献   

2.
Factor analysis of multivariate spatial data is considered. A systematic approach for modeling the underlying structure of potentially irregularly spaced, geo-referenced vector observations is proposed. Statistical inference procedures for selecting the number of factors and for model building are discussed. We derive a condition under which a simple and practical inference procedure is valid without specifying the form of distributions and factor covariance functions. The multivariate prediction problem is also discussed, and a procedure combining the latent variable modeling and a measurement-error-free kriging technique is introduced. Simulation results and an example using agricultural data are presented.  相似文献   

3.
Universal kriging is a form of interpolation that takes into account the local trends in data when minimizing the error associated with the estimator. Under multivariate normality assumptions, the given predictor is the best linear unbiased predictor. but if the underlying distribution is not normal, the estimator will not be unbiased and will be vulnerable to outliers. With spatial data, it is not only the presence of outliers that may spoil the predictions, but also the boundary sites. usually corners, that tend to have high leverage. As an alternative, a weighted one-step generalized M estimator of the location parameters in a spatial linear model is proposed. It is especially recommended in the case of irregularly spaced data.  相似文献   

4.
Summary.  The purpose of the paper is to propose a frequency domain approach for irregularly spaced data on R d . We extend the original definition of a periodogram for time series to that for irregularly spaced data and define non-parametric and parametric spectral density estimators in a way that is similar to the classical approach. Introduction of the mixed asymptotics, which are one of the asymptotics for irregularly spaced data, makes it possible to provide asymptotic theories to the spectral estimators. The asymptotic result for the parametric estimator is regarded as a natural extension of the classical result for regularly spaced data to that for irregularly spaced data. Empirical studies are also included to illustrate the frequency domain approach in comparisons with the existing spatial and frequency domain approaches.  相似文献   

5.
In recent years, wavelet shrinkage has become a very appealing method for data de-noising and density function estimation. In particular, Bayesian modelling via hierarchical priors has introduced novel approaches for Wavelet analysis that had become very popular, and are very competitive with standard hard or soft thresholding rules. In this sense, this paper proposes a hierarchical prior that is elicited on the model parameters describing the wavelet coefficients after applying a Discrete Wavelet Transformation (DWT). In difference to other approaches, the prior proposes a multivariate Normal distribution with a covariance matrix that allows for correlations among Wavelet coefficients corresponding to the same level of detail. In addition, an extra scale parameter is incorporated that permits an additional shrinkage level over the coefficients. The posterior distribution for this shrinkage procedure is not available in closed form but it is easily sampled through Markov chain Monte Carlo (MCMC) methods. Applications on a set of test signals and two noisy signals are presented.  相似文献   

6.
Summary.  We introduce a semiparametric approach for modelling the effect of concurrent events on an outcome of interest. Concurrency manifests itself as temporal and spatial dependences. By temporal dependence we mean the effect of an event in the past. Modelling this effect is challenging since events arrive at irregularly spaced time intervals. For the spatial part we use an abstract notion of 'feature space' to conceptualize distances among a set of item features. We motivate our model in the context of on-line auctions by modelling the effect of concurrent auctions on an auction's price. Our concurrency model consists of three components: a transaction-related component that accounts for auction design and bidding competition, a spatial component that takes into account similarity between item features and a temporal component that accounts for recently closed auctions. To construct each of these we borrow ideas from spatial and mixed model methodology. The power of this model is illustrated on a large and diverse set of laptop auctions on eBay.com. We show that our model results in superior predictive performance compared with a set of competitor models. The model also allows for new insight into the factors that drive price in on-line auctions and their relationship to bidding competition, auction design, product variety and temporal learning effects.  相似文献   

7.
With the ready availability of spatial databases and geographical information system software, statisticians are increasingly encountering multivariate modelling settings featuring associations of more than one type: spatial associations between data locations and associations between the variables within the locations. Although flexible modelling of multivariate point-referenced data has recently been addressed by using a linear model of co-regionalization, existing methods for multivariate areal data typically suffer from unnecessary restrictions on the covariance structure or undesirable dependence on the conditioning order of the variables. We propose a class of Bayesian hierarchical models for multivariate areal data that avoids these restrictions, permitting flexible and order-free modelling of correlations both between variables and across areal units. Our framework encompasses a rich class of multivariate conditionally autoregressive models that are computationally feasible via modern Markov chain Monte Carlo methods. We illustrate the strengths of our approach over existing models by using simulation studies and also offer a real data application involving annual lung, larynx and oesophageal cancer death-rates in Minnesota counties between 1990 and 2000.  相似文献   

8.
Among the diverse frameworks that have been proposed for regression analysis of angular data, the projected multivariate linear model provides a particularly appealing and tractable methodology. In this model, the observed directional responses are assumed to correspond to the angles formed by latent bivariate normal random vectors that are assumed to depend upon covariates through a linear model. This implies an angular normal distribution for the observed angles, and incorporates a regression structure through a familiar and convenient relationship. In this paper we extend this methodology to accommodate clustered data (e.g., longitudinal or repeated measures data) by formulating a marginal version of the model and basing estimation on an EM‐like algorithm in which correlation among within‐cluster responses is taken into account by incorporating a working correlation matrix into the M step. A sandwich estimator is used for the parameter estimates’ covariance matrix. The methodology is motivated and illustrated using an example involving clustered measurements of microbril angle on loblolly pine (Pinus taeda L.) Simulation studies are presented that evaluate the finite sample properties of the proposed fitting method. In addition, the relationship between within‐cluster correlation on the latent Euclidean vectors and the corresponding correlation structure for the observed angles is explored.  相似文献   

9.
ABSTRACT The analysis of a set of data consisting of N short (≤20 observations each) multivariate time series, where the observations are irregularly spaced and where observations for the different components of each multivariate series are observed at different times, is discussed. With the increased use of automatic recording devices in many fields, data such as these, which are of course samples from smooth response curves, are becoming more common. In this application, which was a clinical trial comparing two cements for use in hip replacement surgery, the key to the analysis was in recognizing that the interest lay in the degree to which the five curves representing a patient's vital signs deviated from baseline (i.e., normal for that patient) during surgery. This enabled the statisticians to define appropriate response variables. The analysis included Rosseeuw's (1984) technique for the identification of multivariate outliers and logistic regressions to identify any effects on the process producing the outliers due to treatment or covariates.  相似文献   

10.
To model extreme spatial events, a general approach is to use the generalized extreme value (GEV) distribution with spatially varying parameters such as spatial GEV models and latent variable models. In the literature, this approach is mostly used to capture spatial dependence for only one type of event. This limits the applications to air pollutants data as different pollutants may chemically interact with each other. A recent advancement in spatial extremes modelling for multiple variables is the multivariate max-stable processes. Similarly to univariate max-stable processes, the multivariate version also assumes standard distributions such as unit-Fréchet as margins. Additional modelling is required for applications such as spatial prediction. In this paper, we extend the marginal methods such as spatial GEV models and latent variable models into a multivariate setting based on copulas so that it is capable of handling both the spatial dependence and the dependence among multiple pollutants. We apply our proposed model to analyse weekly maxima of nitrogen dioxide, sulphur dioxide, respirable suspended particles, fine suspended particles, and ozone collected in Pearl River Delta in China.  相似文献   

11.
A spatial process observed over a lattice or a set of irregular regions is usually modeled using a conditionally autoregressive (CAR) model. The neighborhoods within a CAR model are generally formed using only the inter-distances or boundaries between the regions. To accommodate directional spatial variation, a new class of spatial models is proposed using different weights given to neighbors in different directions. The proposed model generalizes the usual CAR model by accounting for spatial anisotropy. Maximum likelihood estimators are derived and shown to be consistent under some regularity conditions. Simulation studies are presented to evaluate the finite sample performance of the new model as compared to the CAR model. Finally, the method is illustrated using a data set on the crime rates of Columbus, OH and on the elevated blood lead levels of children under the age of 72 months observed in Virginia in the year of 2000.  相似文献   

12.
In this paper we present Bayesian analysis of finite mixtures of multivariate Poisson distributions with an unknown number of components. The multivariate Poisson distribution can be regarded as the discrete counterpart of the multivariate normal distribution, which is suitable for modelling multivariate count data. Mixtures of multivariate Poisson distributions allow for overdispersion and for negative correlations between variables. To perform Bayesian analysis of these models we adopt a reversible jump Markov chain Monte Carlo (MCMC) algorithm with birth and death moves for updating the number of components. We present results obtained from applying our modelling approach to simulated and real data. Furthermore, we apply our approach to a problem in multivariate disease mapping, namely joint modelling of diseases with correlated counts.  相似文献   

13.
A Composite Likelihood Approach to Multivariate Survival Data   总被引:2,自引:1,他引:1  
This paper is about the statistical analysis of multivariate survival data. We discuss the additive and multiplicative frailty models which have been the most popular models for multivariate survival data. As an alternative to the additive and multiplicative frailty models, we propose basing inference on a composite likelihood function that only requires modelling of the marginal distribution of pairs of failure times. Each marginal distribution of a pair of failure times is here assumed to follow a shared frailty model. The method is illustrated with a real-life example.  相似文献   

14.
Modeling spatial interactions that arise in spatially referenced data is commonly done by incorporating the spatial dependence into the covariance structure either explicitly or implicitly via an autoregressive model. In the case of lattice (regional summary) data, two common autoregressive models used are the conditional autoregressive model (CAR) and the simultaneously autoregressive model (SAR). Both of these models produce spatial dependence in the covariance structure as a function of a neighbor matrix W and often a fixed unknown spatial correlation parameter. This paper examines in detail the correlation structures implied by these models as applied to an irregular lattice in an attempt to demonstrate their many counterintuitive or impractical results. A data example is used for illustration where US statewide average SAT verbal scores are modeled and examined for spatial structure using different spatial models.  相似文献   

15.
Conditionally autoregressive (CAR) models are often used to analyze a spatial process observed over a lattice or a set of irregular regions. The neighborhoods within a CAR model are generally formed deterministically using the inter-distances or boundaries between the regions. To accommodate directional and inherent anisotropy variation, a new class of spatial models is proposed that adaptively determines neighbors based on a bivariate kernel using the distances and angles between the centroid of the regions. The newly proposed model generalizes the usual CAR model in a sense of accounting for adaptively determined weights. Maximum likelihood estimators are derived and simulation studies are presented for the sampling properties of the estimates on the new model, which is compared to the CAR model. Finally the method is illustrated using a data set on the elevated blood lead levels of children under the age of 72 months observed in Virginia in the year of 2000.  相似文献   

16.
Summary.  In a precision farming context, differentiated management decisions regarding fertilization, application of lime and other cultivation activities may require the subdivision of the field into homogeneous regions with respect to the soil variables of main agronomic significance. The paper develops an approach that is aimed at delineating homogeneous regions on the basis of measurements of a categorical and quantitative nature, namely soil type and resistivity measurements at different soil layers. We propose a Bayesian multivariate spatial model and embed it in a Markov chain Monte Carlo inference scheme. Implementation is discussed using real data from a 15-ha field. Although applied to soil data, this model could be relevant in areas of spatial modelling as diverse as epidemiology, ecology or meteorology.  相似文献   

17.
Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology, where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants'' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings.  相似文献   

18.
In this work, we consider a hierarchical spatio-temporal model for particulate matter (PM) concentration in the North-Italian region Piemonte. The model involves a Gaussian Field (GF), affected by a measurement error, and a state process characterized by a first order autoregressive dynamic model and spatially correlated innovations. This kind of model is well discussed and widely used in the air quality literature thanks to its flexibility in modelling the effect of relevant covariates (i.e. meteorological and geographical variables) as well as time and space dependence. However, Bayesian inference—through Markov chain Monte Carlo (MCMC) techniques—can be a challenge due to convergence problems and heavy computational loads. In particular, the computational issue refers to the infeasibility of linear algebra operations involving the big dense covariance matrices which occur when large spatio-temporal datasets are present. The main goal of this work is to present an effective estimating and spatial prediction strategy for the considered spatio-temporal model. This proposal consists in representing a GF with Matérn covariance function as a Gaussian Markov Random Field (GMRF) through the Stochastic Partial Differential Equations (SPDE) approach. The main advantage of moving from a GF to a GMRF stems from the good computational properties that the latter enjoys. In fact, GMRFs are defined by sparse matrices that allow for computationally effective numerical methods. Moreover, when dealing with Bayesian inference for GMRFs, it is possible to adopt the Integrated Nested Laplace Approximation (INLA) algorithm as an alternative to MCMC methods giving rise to additional computational advantages. The implementation of the SPDE approach through the R-library INLA (www.r-inla.org) is illustrated with reference to the Piemonte PM data. In particular, providing the step-by-step R-code, we show how it is easy to get prediction and probability of exceedance maps in a reasonable computing time.  相似文献   

19.
A parametric modelling for interval data is proposed, assuming a multivariate Normal or Skew-Normal distribution for the midpoints and log-ranges of the interval variables. The intrinsic nature of the interval variables leads to special structures of the variance–covariance matrix, which is represented by five different possible configurations. Maximum likelihood estimation for both models under all considered configurations is studied. The proposed modelling is then considered in the context of analysis of variance and multivariate analysis of variance testing. To access the behaviour of the proposed methodology, a simulation study is performed. The results show that, for medium or large sample sizes, tests have good power and their true significance level approaches nominal levels when the constraints assumed for the model are respected; however, for small samples, sizes close to nominal levels cannot be guaranteed. Applications to Chinese meteorological data in three different regions and to credit card usage variables for different card designations, illustrate the proposed methodology.  相似文献   

20.
Label switching is a well-known and fundamental problem in Bayesian estimation of finite mixture models. It arises when exploring complex posterior distributions by Markov Chain Monte Carlo (MCMC) algorithms, because the likelihood of the model is invariant to the relabelling of mixture components. If the MCMC sampler randomly switches labels, then it is unsuitable for exploring the posterior distributions for component-related parameters. In this paper, a new procedure based on the post-MCMC relabelling of the chains is proposed. The main idea of the method is to perform a clustering technique on the similarity matrix, obtained through the MCMC sample, whose elements are the probabilities that any two units in the observed sample are drawn from the same component. Although it cannot be generalized to any situation, it may be handy in many applications because of its simplicity and very low computational burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号