首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We consider the problem of parameter estimation for an ergodic diffusion with reciprocal gamma invariant distribution. Spectral decomposition of the transition density of such a Markov process is presented in terms of a finite number of discrete eigenfunctions (Bessel polynomials) and eigenfunctions related to a continuous part of the spectrum of the negative infinitesimal generator of reciprocal gamma diffusion. Consistency and asymptotical normality of proposed estimators are presented. Based on the Stein equation for reciprocal gamma diffusion and Bessel polynomials, the hypothesis testing procedure is considered.  相似文献   

2.
The paper investigates parameter estimation for Markov random fields and for hidden Markov random fields, where noisy data are available. EM algorithms are described and an approximate procedure is developed based on row-by-row relaxation and analysis. Numerical illustrations are provided.  相似文献   

3.
Abstract. We introduce a class of Gibbs–Markov random fields built on regular tessellations that can be understood as discrete counterparts of Arak–Surgailis polygonal fields. We focus first on consistent polygonal fields, for which we show consistency, Markovianity and solvability by means of dynamic representations. Next, we develop disagreement loop as well as path creation and annihilation dynamics for their general Gibbsian modifications, which cover most lattice‐based Gibbs–Markov random fields subject to certain mild conditions. Applications to foreground–background image segmentation problems are discussed.  相似文献   

4.
Discrete Markov random fields form a natural class of models to represent images and spatial datasets. The use of such models is, however, hampered by a computationally intractable normalising constant. This makes parameter estimation and a fully Bayesian treatment of discrete Markov random fields difficult. We apply approximation theory for pseudo-Boolean functions to binary Markov random fields and construct approximations and upper and lower bounds for the associated computationally intractable normalising constant. As a by-product of this process we also get a partially ordered Markov model approximation of the binary Markov random field. We present numerical examples with both the pairwise interaction Ising model and with higher-order interaction models, showing the quality of our approximations and bounds. We also present simulation examples and one real data example demonstrating how the approximations and bounds can be applied for parameter estimation and to handle a fully Bayesian model computationally.  相似文献   

5.
Based on a random cluster representation, the Swendsen–Wang algorithm for the Ising and Potts distributions is extended to a class of continuous Markov random fields. The algorithm can be described briefly as follows. A given configuration is decomposed into clusters. Probabilities for flipping the values of the random variables in each cluster are calculated. According to these probabilities, values of all the random variables in each cluster will be either updated or kept unchanged and this is done independently across the clusters. A new configuration is then obtained. We will show through a simulation study that, like the Swendsen–Wang algorithm in the case of Ising and Potts distributions, the cluster algorithm here also outperforms the Gibbs sampler in beating the critical slowing down for some strongly correlated Markov random fields.  相似文献   

6.
Fitting Gaussian Markov Random Fields to Gaussian Fields   总被引:3,自引:0,他引:3  
This paper discusses the following task often encountered in building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in some observed data, or consistent with prior knowledge. The Markov property is essential in designing computationally efficient Markov chain Monte Carlo algorithms to analyse such models. We argue that we can restate both tasks as that of fitting a GMRF to a prescribed stationary Gaussian field on a lattice when both local and global properties are important. We demonstrate that using the KullbackLeibler discrepancy often fails for this task, giving severely undesirable behaviour of the correlation function for lags outside the neighbourhood. We propose a new criterion that resolves this difficulty, and demonstrate that GMRFs with small neighbourhoods can approximate Gaussian fields surprisingly well even with long correlation lengths. Finally, we discuss implications of our findings for likelihood based inference for general Markov random fields when global properties are also important.  相似文献   

7.
Potential theory and Dirichlet’s priciple constitute the basic elements of the well-known classical theory of Markov processes and Dirichlet forms. This paper presents new classes of fractional spatiotemporal covariance models, based on the theory of non-local Dirichlet forms, characterizing the fundamental solution, Green kernel, of Dirichlet boundary value problems for fractional pseudodifferential operators. The elements of the associated Gaussian random field family have compactly supported non-separable spatiotemporal covariance kernels admitting a parametric representation. Indeed, such covariance kernels are not self-similar but can display local self-similarity, interpolating regular and fractal local behavior in space and time. The associated local fractional exponents are estimated from the empirical log-wavelet variogram. Numerical examples are simulated for illustrating the properties of the space–time covariance model class introduced.  相似文献   

8.
The article studies non‐Gaussian extensions of a recently discovered link between certain Gaussian random fields, expressed as solutions to stochastic partial differential equations (SPDEs), and Gaussian Markov random fields. The focus is on non‐Gaussian random fields with Matérn covariance functions, and in particular, we show how the SPDE formulation of a Laplace moving‐average model can be used to obtain an efficient simulation method as well as an accurate parameter estimation technique for the model. This should be seen as a demonstration of how these techniques can be used, and generalizations to more general SPDEs are readily available.  相似文献   

9.
Piecewise-deterministic Markov processes form a general class of non diffusion stochastic models that involve both deterministic trajectories and random jumps at random times. In this paper, we state a new characterization of the jump rate of such a process with discrete transitions. We deduce from this result a non parametric technique for estimating this feature of interest. We state the uniform convergence in probability of the estimator. The methodology is illustrated on a numerical example.  相似文献   

10.
This paper describes the modelling and fitting of Gaussian Markov random field spatial components within a Generalized AdditiveModel for Location, Scale and Shape (GAMLSS) model. This allows modelling of any or all the parameters of the distribution for the response variable using explanatory variables and spatial effects. The response variable distribution is allowed to be a non-exponential family distribution. A new package developed in R to achieve this is presented. We use Gaussian Markov random fields to model the spatial effect in Munich rent data and explore some features and characteristics of the data. The potential of using spatial analysis within GAMLSS is discussed. We argue that the flexibility of parametric distributions, ability to model all the parameters of the distribution and diagnostic tools of GAMLSS provide an ideal environment for modelling spatial features of data.  相似文献   

11.
The characterization and estimation of the Hölder regularity of random fields has long been an important topic of Probability theory and Statistics. This notion of regularity has also been widely used in image analysis to measure the roughness of textures. However, such a measure is rarely sufficient to characterize textures as it does not account for their directional properties (e.g., isotropy and anisotropy). In this paper, we present an approach to further characterize directional properties associated with the Hölder regularity of random fields. Using the spectral density, we define a notion of asymptotic topothesy which quantifies directional contributions of field high-frequencies to the Hölder regularity. This notion is related to the topothesy function of the so-called anisotropic fractional Brownian fields, but is defined in a more generic framework of intrinsic random fields. We then propose a method based on multi-oriented quadratic variations to estimate this asymptotic topothesy. Eventually, we evaluate this method on synthetic data and apply it for the characterization of historical photographic papers.  相似文献   

12.
For applications in texture synthesis, we derive two approximate Bayes criteria for selecting a model from a collection of Markov random fields. The first criterion is based on a penalized maximum likelihood. The second criterion, a Markov chain Monte Carlo approximation to the first, has distinct computational advantages. Some simulation results are also presented.  相似文献   

13.
Gaussian random fields whose covariance structures are described by a power law model provide a simple and flexible class of models for isotropic random fields. This class includes fractional Brownian fields as a special case. Because these random fields are nonstationary, the extensive results available on equivalence of Gaussian measures for stationary models do not apply to them. This work shows that results on equivalence for two stationary Gaussian random field models extend in a natural way to the equivalence of a stationary model and a power law model. This result is used to show that if we use a power law model for predicting a random field at unobserved locations when in fact the random field is stationary, we can obtain asymptotically optimal predictions as long as the high frequency behavior of the true spectral density is sufficiently close to the high frequency behavior of the spectral density of the power law model.  相似文献   

14.
This paper demonstrates how Gaussian Markov random fields (conditional autoregressions) can be sampled quickly by using numerical techniques for sparse matrices. The algorithm is general and efficient, and expands easily to various forms for conditional simulation and evaluation of normalization constants. We demonstrate its use by constructing efficient block updates in Markov chain Monte Carlo algorithms for disease mapping.  相似文献   

15.
Markov Random Fields with Higher-order Interactions   总被引:5,自引:0,他引:5  
Discrete-state Markov random fields on regular arrays have played a significant role in spatial statistics and image analysis. For example, they are used to represent objects against background in computer vision and pixel-based classification of a region into different crop types in remote sensing. Convenience has generally favoured formulations that involve only pairwise interactions. Such models are in themselves unrealistic and, although they often perform surprisingly well in tasks such as the restoration of degraded images, they are unsatisfactory for many other purposes. In this paper, we consider particular forms of Markov random fields that involve higher-order interactions and therefore are better able to represent the large-scale properties of typical spatial scenes. Interpretations of the parameters are given and realizations from a variety of models are produced via Markov chain Monte Carlo. Potential applications are illustrated in two examples. The first concerns Bayesian image analysis and confirms that pairwise-interaction priors may perform very poorly for image functionals such as number of objects, even when restoration apparently works well. The second example describes a model for a geological dataset and obtains maximum-likelihood parameter estimates using Markov chain Monte Carlo. Despite the complexity of the formulation, realizations of the estimated model suggest that the representation is quite realistic.  相似文献   

16.
Summary.  Functional magnetic resonance imaging has become a standard technology in human brain mapping. Analyses of the massive spatiotemporal functional magnetic resonance imaging data sets often focus on parametric or non-parametric modelling of the temporal component, whereas spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high curvature transitions between activated and non-activated regions of the brain. To improve spatial adaptivity, we introduce a class of inhomogeneous Markov random fields with stochastic interaction weights in a space-varying coefficient model. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, can be carried out through efficient Markov chain Monte Carlo simulation. Although motivated by the analysis of functional magnetic resonance imaging data, the methodological development is general and can also be used for spatial smoothing and regression analysis of areal data on irregular lattices. An application to stylized artificial data and to real functional magnetic resonance imaging data from a visual stimulation experiment demonstrates the performance of our approach in comparison with Gaussian and robustified non-Gaussian Markov random-field models.  相似文献   

17.
This paper illustrates the use of quasi-likelihood methods of inference for hidden Markov random fields. These are simple to use and can be employed under circumstances where only the model form and its covariance structure are specified. In particular they can be used to derive the same estimating equations as the E-M algorithm or change of measure methods, which make full distributional assumptions.  相似文献   

18.
In survival analysis and reliability studies, problems with random sample size arise quite frequently. More specifically, in cancer studies, the number of clonogens is unknown and the time to relapse of the cancer is defined by the minimum of the incubation times of the various clonogenic cells. In this article, we have proposed a new model where the distribution of the incubation time is taken as Weibull and the distribution of the random sample size as Bessel, giving rise to a Weibull–Bessel distribution. The maximum likelihood estimation of the model parameters is studied and a score test is developed to compare it with its special submodel, namely, exponential–Bessel distribution. To illustrate the model, two real datasets are examined, and it is shown that the proposed model, presented here, fits better than several other existing models in the literature. Extensive simulation studies are also carried out to examine the performance of the estimates.  相似文献   

19.
We survey the use of Markov models from stochastic geometry as priors in ‘high-level’ computer vision, in direct analogy with the use of discrete Markov random fields in ‘low-level’ vision. There are analogues of the Gibbs sampler, ICM and simulated annealing, and connections with existing methods in computer vision.  相似文献   

20.
The notion of generalized power of a positive definite symmetric matrix and a related notion of generalized Bessel function are used to introduce an extension of the class of matrix generalized inverse Gaussian distributions. The new distributions are shown to arise as conditional distributions of Peirce components of Riesz random matrices. Things are explained in the modern framework of symmetric cones and simple Euclidean Jordan algebra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号