首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data‐based model selection. A result of Efron in 2014 is a very convenient and widely applicable formula for a delta method approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron considered a confidence interval centred on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post‐model‐selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of the confidence interval centred on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probability, based on the full model.  相似文献   

2.
Principal component regression (PCR) has two steps: estimating the principal components and performing the regression using these components. These steps generally are performed sequentially. In PCR, a crucial issue is the selection of the principal components to be included in regression. In this paper, we build a hierarchical probabilistic PCR model with a dynamic component selection procedure. A latent variable is introduced to select promising subsets of components based upon the significance of the relationship between the response variable and principal components in the regression step. We illustrate this model using real and simulated examples. The simulations demonstrate that our approach outperforms some existing methods in terms of root mean squared error of the regression coefficient.  相似文献   

3.
Introducing model uncertainty by moving blocks bootstrap   总被引:1,自引:1,他引:0  
It is common in parametric bootstrap to select the model from the data, and then treat as if it were the true model. Chatfield (1993, 1996) has shown that ignoring the model uncertainty may seriously undermine the coverage accuracy of prediction intervals. In this paper, we propose a method based on moving block bootstrap for introducing the model selection step in the resampling algorithm. We present a Monte Carlo study comparing the finite sample properties of the proposel method with those of alternative methods in the case of prediction intervas.  相似文献   

4.
Comment     
We propose a sequential test for predictive ability for recursively assessing whether some economic variables have explanatory content for another variable. In the forecasting literature it is common to assess predictive ability by using “one-shot” tests at each estimation period. We show that this practice leads to size distortions, selects overfitted models and provides spurious evidence of in-sample predictive ability, and may lower the forecast accuracy of the model selected by the test. The usefulness of the proposed test is shown in well-known empirical applications to the real-time predictive content of money for output and the selection between linear and nonlinear models.  相似文献   

5.
Two new model selection procedures based on a measure of roughness of the residuals in simple regression are proposed and studied. The first criterion utilises a certain loss function and the second comprises the application of hypotheses tests, using the bootstrap methodology. The performances of these selection rules are illustrated and comparisons are made with traditional criteria using real and artificial data, and it is found that the new selection methods perform more satisfactorily.  相似文献   

6.
Abstract. Similar to variable selection in the linear model, selecting significant components in the additive model is of great interest. However, such components are unknown, unobservable functions of independent variables. Some approximation is needed. We suggest a combination of penalized regression spline approximation and group variable selection, called the group‐bridge‐type spline method (GBSM), to handle this component selection problem with a diverging number of correlated variables in each group. The proposed method can select significant components and estimate non‐parametric additive function components simultaneously. To make the GBSM stable in computation and adaptive to the level of smoothness of the component functions, weighted power spline bases and projected weighted power spline bases are proposed. Their performance is examined by simulation studies. The proposed method is extended to a partial linear regression model analysis with real data, and gives reliable results.  相似文献   

7.
To select a proper order is a critical step in fitting a model to a data set. It is well known that Mallows' Cp,as well as other asymptotically equivalent order selectors, often selects an excessively large order. To reduce the chance of overestimating the optimal order using a heavier penalty term has been suggested. In this paper, the issue about setting the penalty term is considered from a perspective similar to hypothesis testing. It is suggested setting the penalty according to the probabiiity of overestimating the true or optimal order. A test procedure based on the order selecters is proposed to assess the significance of the order selected. Some simulation results are presented to illustrate the properties of the order selectors and the test procedure. The application of the procedures to two real examples are also presented.  相似文献   

8.
Nonparametric model specification for stationary time series involves selections of the smoothing parameter (bandwidth), the lag structure and the functional form (linear vs. nonlinear). In real life problems, none of these factors are known and the choices are interdependent. In this article, we recommend to accomplish these choices in one step via the model selection approach. Two procedures are considered; one based on the information criterion and the other based on the least squares cross validation. The Monte Carlo simulation results show that both procedures have good finite sample performances and are easy to implement compared to existing two-step probabilistic testing procedures.  相似文献   

9.
Applying nonparametric variable selection criteria in nonlinear regression models generally requires a substantial computational effort if the data set is large. In this paper we present a selection technique that is computationally much less demanding and performs well in comparison with methods currently available. It is based on a polynomial approximation of the nonlinear model. Performing the selection only requires repeated least squares estimation of models that are linear in parameters. The main limitation of the method is that the number of variables among which to select cannot be very large if the sample is small and the order of an adequate polynomial at the same time is high. Large samples can be handled without problems.  相似文献   

10.
We propose a penalized quantile regression for partially linear varying coefficient (VC) model with longitudinal data to select relevant non parametric and parametric components simultaneously. Selection consistency and oracle property are established. Furthermore, if linear part and VC part are unknown, we propose a new unified method, which can do three types of selections: separation of varying and constant effects, selection of relevant variables, and it can be carried out conveniently in one step. Consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies and real data analysis also confirm our method.  相似文献   

11.
The comparison amongmproportions can be viewed as the clustering of the means of Bernoulli trials. By introducing a distribution which is supported on the means of Bernoulli trials, we suggest a moment method approach to determine the center of the clusters. We also suggest using model selection criteria rather than the usual testing hypothesis approach to determine the grouping of the means. The discrepancy function for all possible models are compared based on the bootstrap results.  相似文献   

12.
In this article, we consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors, in the presence of outliers. Since the LASSO is a special case of the penalized least-square regression with L1 penalty function, it suffers from the heavy-tailed errors and/or outliers in data. Recently, Least Absolute Deviation (LAD) and the LASSO methods have been combined (the LAD-LASSO regression method) to carry out robust parameter estimation and variable selection simultaneously for a multiple linear regression model. However, variable selection of the functional predictors based on LASSO fails since multiple parameters exist for a functional predictor. Therefore, group LASSO is used for selecting functional predictors since group LASSO selects grouped variables rather than individual variables. In this study, we propose a robust functional predictor selection method, the LAD-group LASSO, for a functional linear regression model with a scalar response and functional predictors. We illustrate the performance of the LAD-group LASSO on both simulated and real data.  相似文献   

13.
In applications of multivariate finite mixture models, estimating the number of unknown components is often difficult. We propose a bootstrap information criterion, whereby we calculate the expected log-likelihood at maximum a posteriori estimates for model selection. Accurate estimation using the bootstrap requires a large number of bootstrap replicates. We accelerate this computation by employing parallel processing with graphics processing units (GPUs) on the Compute Unified Device Architecture (CUDA) platform. We conducted a runtime comparison of CUDA algorithms between implementation on the GPU and that on a CPU. The results showed significant performance gains in the proposed CUDA algorithms over multithread CPUs.  相似文献   

14.
The main focus of our paper is to compare the performance of different model selection criteria used for multivariate reduced rank time series. We consider one of the most commonly used reduced rank model, that is, the reduced rank vector autoregression (RRVAR (p, r)) introduced by Velu et al. [Reduced rank models for multiple time series. Biometrika. 1986;7(31):105–118]. In our study, the most popular model selection criteria are included. The criteria are divided into two groups, that is, simultaneous selection and two-step selection criteria, accordingly. Methods from the former group select both an autoregressive order p and a rank r simultaneously, while in the case of two-step criteria, first an optimal order p is chosen (using model selection criteria intended for the unrestricted VAR model) and then an optimal rank r of coefficient matrices is selected (e.g. by means of sequential testing). Considered model selection criteria include well-known information criteria (such as Akaike information criterion, Schwarz criterion, Hannan–Quinn criterion, etc.) as well as widely used sequential tests (e.g. the Bartlett test) and the bootstrap method. An extensive simulation study is carried out in order to investigate the efficiency of all model selection criteria included in our study. The analysis takes into account 34 methods, including 6 simultaneous methods and 28 two-step approaches, accordingly. In order to carefully analyse how different factors affect performance of model selection criteria, we consider over 150 simulation settings. In particular, we investigate the influence of the following factors: time series dimension, different covariance structure, different level of correlation among components and different level of noise (variance). Moreover, we analyse the prediction accuracy concerned with the application of the RRVAR model and compare it with results obtained for the unrestricted vector autoregression. In this paper, we also present a real data application of model selection criteria for the RRVAR model using the Polish macroeconomic time series data observed in the period 1997–2007.  相似文献   

15.
VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS   总被引:4,自引:0,他引:4  
We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is "small" relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method.  相似文献   

16.
内容提要:向量自回归模型是多元时间序列分析中最常用的方法之一。在建立模型的过程中模型选择是非常重要的一个环节,如果候选模型不是很多时,可以通过比较每个模型的准则值如AIC、AICc、BIC或HQ进行模型选择。可是,当存在大量候选模型时,我们无法一一比较每个模型的准则值。为了解决这个问题,本文提出一个基于吉伯斯样本生成器的向量自回归模型选择方法,结果表明应用该方法能够从大量候选模型中准确、高效地确认准则值最小的模型。  相似文献   

17.
In this paper, we consider the problem of variable selection for partially varying coefficient single-index model, and present a regularized variable selection procedure by combining basis function approximations with smoothly clipped absolute deviation penalty. The proposed procedure simultaneously selects significant variables in the single-index parametric components and the nonparametric coefficient function components. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. Finite sample performance of the proposed method is illustrated by a simulation study and real data analysis.  相似文献   

18.
It is widely known that bootstrap failure can often be remedied by using a technique known as the ' m out of n ' bootstrap, by which a smaller number, m say, of observations are resampled from the original sample of size n . In successful cases of the bootstrap, the m out of n bootstrap is often deemed unnecessary. We show that the problem of constructing nonparametric confidence intervals is an exceptional case. By considering a new class of m out of n bootstrap confidence limits, we develop a computationally efficient approach based on the double bootstrap to construct the optimal m out of n bootstrap intervals. We show that the optimal intervals have a coverage accuracy which is comparable with that of the classical double-bootstrap intervals, and we conduct a simulation study to examine their performance. The results are in general very encouraging. Alternative approaches which yield even higher order accuracy are also discussed.  相似文献   

19.
Abstract

In this article, we consider a panel data partially linear regression model with fixed effect and non parametric time trend function. The data can be dependent cross individuals through linear regressor and error components. Unlike the methods using non parametric smoothing technique, a difference-based method is proposed to estimate linear regression coefficients of the model to avoid bandwidth selection. Here the difference technique is employed to eliminate the non parametric function effect, not the fixed effects, on linear regressor coefficient estimation totally. Therefore, a more efficient estimator for parametric part is anticipated, which is shown to be true by the simulation results. For the non parametric component, the polynomial spline technique is implemented. The asymptotic properties of estimators for parametric and non parametric parts are presented. We also show how to select informative ones from a number of covariates in the linear part by using smoothly clipped absolute deviation-penalized estimators on a difference-based least-squares objective function, and the resulting estimators perform asymptotically as well as the oracle procedure in terms of selecting the correct model.  相似文献   

20.
In this paper, we extend the modified lasso of Wang et al. (2007) to the linear regression model with autoregressive moving average (ARMA) errors. Such an extension is far from trivial because new devices need to be called for to establish the asymptotics due to the existence of the moving average component. A shrinkage procedure is proposed to simultaneously estimate the parameters and select the informative variables in the regression, autoregressive, and moving average components. We show that the resulting estimator is consistent in both parameter estimation and variable selection, and enjoys the oracle properties. To overcome the complexity in numerical computation caused by the existence of the moving average component, we propose a procedure based on a least squares approximation to implement estimation. The ordinary least squares formulation with the use of the modified lasso makes the computation very efficient. Simulation studies are conducted to evaluate the finite sample performance of the procedure. An empirical example of ground-level ozone is also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号