首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a new parameter estimation method, named E-Bayesian method, is considered to obtain the estimates of the unknown parameter and reliability function based on record values. The maximum likelihood, Bayesian, E-Bayesian, and hierarchical Bayesian estimates of the unknown parameter and reliability function are obtained when the underlying distribution belongs to the proportional hazard rate model. The Bayesian estimates are obtained based on squared error and linear-exponential loss functions. The previously obtained some relations for the E-Bayesian estimates are improved. The relationship between E-Bayesian and hierarchical Bayesian estimations are obtained under the same loss functions. The comparison of the derived estimates are carried out by using Monte Carlo simulations. Real data are analyzed for an illustration of the findings.  相似文献   

2.
This paper is concerned with using the E-Bayesian method for computing estimates of exponential distribution. In order to measure the estimated error, based on the E-Bayesian estimation, we proposed the definition of E-MSE(expected mean square error). Moreover, the formulas of E-Bayesian estimation and formulas of E-MSE are given respectively, these estimations are derived based on a conjugate prior distribution for the unknown parameter under the scaled squared error loss function. The properties of E-MSE under different scaled parameters are also provided. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and a real data set have been analysed for illustrative purposes. Results are compared on the basis of E-MSE.  相似文献   

3.
Han introduced an E-Bayesian estimation method for estimating a system failure probability and revealed the relationship between the E-Bayesian estimates under three different prior distributions of hyperparameters in 2007. In this article, formulas of the hierarchical Bayesian estimation of a system failure probability are investigated and, furthermore, the relationship between hierarchical Bayesian estimation and E-Bayesian estimation is discussed. Finally, numerical example and application example are provided for illustrative purpose.  相似文献   

4.
In this paper, we study the E-Bayesian and hierarchical Bayesian estimations of the parameter derived from Pareto distribution under different loss functions. The definition of the E-Bayesian estimation of the parameter is provided. Moreover, for Pareto distribution, under the condition of the scale parameter is known, based on the different loss functions, formulas of the E-Bayesian estimation and hierarchical Bayesian estimations for the shape parameter are given, respectively, properties of the E-Bayesian estimation – (i) the relationship between of E-Bayesian estimations under different loss functions are provided, (ii) the relationship between of E-Bayesian and hierarchical Bayesian estimations under the same loss function are also provided, and using the Monte Carlo method simulation example is given. Finally, combined with the golfers income data practical problem are calculated, the results show that the proposed method is feasible and convenient for application.  相似文献   

5.
In this paper, E-Bayesian and hierarchical Bayesian estimations of the shape parameter, when the underlying distribution belongs to the proportional reversed hazard rate model, are considered. Maximum likelihood, Bayesian and E-Bayesian estimates of the unknown parameter and reliability function are obtained based on record values. The Bayesian estimates are derived based on squared error and linear–exponential loss functions. It is pointed out that some previously obtained order relations of E-Bayesian estimates are inadequate and these results are improved. The relationship between E-Bayesian and hierarchical Bayesian estimations is obtained under the same loss functions. The comparison of the derived estimates is carried out by using Monte Carlo simulations. A real data set is analysed for an illustration of the findings.  相似文献   

6.
Abstract

This article studies E-Bayesian estimation and its E-posterior risk, for failure rate derived from exponential distribution, in the case of the two hyper parameters. In order to measure the estimated risk, the definition of E-posterior risk (expected posterior risk) is proposed based on the definition of E-Bayesian estimation. Moreover, under the different prior distributions of hyper parameters, the formulas of E-Bayesian estimation and formulas of E-posterior risk are given respectively, these estimations are derived based on a conjugate prior distribution for the unknown parameter under the squared error loss function. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and a real data set have been analyzed for illustrative purposes, results are compared on the basis of E-posterior risk.  相似文献   

7.
Estimation of reliability and hazard rate is necessary in many applications. To this aim, different methods of estimation have been employed. Each method suffers from its own problems such as complexity of calculations, high risk and so on. Toward this end, this study employed a new method, E-Bayesian, for estimating the parametric functions of the Generalized Inverted Exponential distribution, which is one of the most noticeable distributions in lifetime studies. Relations are derived under a squared error loss function, type-II censoring and a conjugate prior. E-Bayesian estimations are obtained based on different priors of the hyperparameters to investigate the influence of different prior distributions on these estimations. The asymptotic behaviors of E-Bayesian estimations and relations among them have been investigated. Finally, a comparison among the maximum likelihood, Bayes and E-Bayesian estimations in different sample sizes are made, using a real data and the Monte Carlo simulation. Simulations show that the new presented method is more efficient than previous methods and is also easy to operate. Also, some comparisons among the results of Generalized Inverted Exponential distribution, Exponential distribution and Generalized Exponential distribution are provided.KEYWORDS: E-Bayesian estimation, generalized Inverted exponential distribution, type-II censoring, reliability, hazard rate, Monte Carlo simulation  相似文献   

8.
This article introduces a new parameter estimation method, named E-Bayesian estimation, to estimate failure probability. The method is suitable for the censored or truncated data with small sample sizes and high reliability. The definition, properties and related simulation study of the E-Bayesian estimation are given. A real data set is also discussed. Through the examples, the efficiency and easiness of operation of this method are commended.  相似文献   

9.
This paper explores properties of the E-Bayesian and hierarchical Bayesian estimations of the system reliability parameter. E-Bayesian estimation and hierarchical Bayesian estimation of Pascal distribution's parameter under two loss function, LINEX loss function and entropy loss function can be found. We obtained limits of that the E-Bayesian estimation and hierarchical Bayesian estimation are equal. A Monte Carlo simulation is used to compare performances of the two methods.  相似文献   

10.
The main purpose of this article is to introduce the E-Bayesian approach to gain flexibility in the reliability-availability system estimation. This approach will be used in series systems, parallel systems, and k-out-of-m systems, based on exponential distribution under squared error loss function, when time is continuous. We use three prior distributions to investigate its impact on the E-Bayesian approach, those prior distributions cover a big spectrum of possibilities. We show in real examples and also by simulations, how the procedure behaves. In the simulation study also we explore the impact on this estimation approach, when the number of components of the system increases.  相似文献   

11.
In this paper, a new life test plan called a progressively first-failure-censoring scheme introduced by Wu and Ku? [On estimation based on progressive first-failure-censored sampling, Comput. Statist. Data Anal. 53(10) (2009), pp. 3659–3670] is considered. Based on this type of censoring, the maximum likelihood (ML) and Bayes estimates for some survival time parameters namely reliability and hazard functions, as well as the parameters of the Burr-XII distribution are obtained. The Bayes estimators relative to both the symmetric and asymmetric loss functions are discussed. We use the conjugate prior for the one-shape parameter and discrete prior for the other parameter. Exact and approximate confidence intervals with the exact confidence region for the two-shape parameters are derived. A numerical example using the real data set is provided to illustrate the proposed estimation methods developed here. The ML and the different Bayes estimates are compared via a Monte Carlo simulation study.  相似文献   

12.
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of a modified Weibull distribution based on a complete sample. While maximum-likelihood estimation (MLE) is the most used method for parameter estimation, MCMC has recently emerged as a good alternative. When applied to parameter estimation, MCMC methods have been shown to be easy to implement computationally, the estimates always exist and are statistically consistent, and their probability intervals are convenient to construct. Details of applying MCMC to parameter estimation for the modified Weibull model are elaborated and a numerical example is presented to illustrate the methods of inference discussed in this paper. To compare MCMC with MLE, a simulation study is provided, and the differences between the estimates obtained by the two algorithms are examined.  相似文献   

13.
In this article, we assess Bayesian estimation and prediction using integrated Laplace approximation (INLA) on a stochastic volatility (SV) model. This was performed through a Monte Carlo study with 1,000 simulated time series. To evaluate the estimation method, two criteria were considered: the bias and square root of the mean square error (smse). The criteria used for prediction are the one step ahead forecast of volatility and the one day Value at Risk (VaR). The main findings are that the INLA approximations are fairly accurate and relatively robust to the choice of prior distribution on the persistence parameter. Additionally, VaR estimates are computed and compared for three financial time series returns indexes.  相似文献   

14.
The maximum likelihood and Bayesian approaches for parameter estimations and prediction of future record values have been considered for the two-parameter Burr Type XII distribution based on record values with the number of trials following the record values (inter-record times). Firstly, the Bayes estimates are obtained based on a joint bivariate prior for the shape parameters. In this case, the Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo (MCMC) method due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The MCMC method has been also used to construct the highest posterior density credible intervals. Secondly, the Bayes estimates are obtained with respect to a discrete prior for the first shape parameter and a conjugate prior for other shape parameter. The Bayes and the maximum likelihood estimates are compared in terms of the estimated risk by the Monte Carlo simulations. We further consider the non-Bayesian and Bayesian prediction for future lower record arising from the Burr Type XII distribution based on record data. The comparison of the derived predictors is carried out by using Monte Carlo simulations. A real data are analysed for illustration purposes.  相似文献   

15.
This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimates were used in a second step to estimate the unknowns from the vertical line. The proposed estimation procedure has the ability to minimize the number of unknown parameters in formulating the GME system within each step, and hence reduce variability of the estimates. Analytical and illustrative Monte Carlo simulation comparison experiments with the maximum likelihood estimators and a one-step GME estimation procedure were presented. Simulation experiments demonstrated that the two steps estimation procedure produced parameter estimates that are more accurate and more efficient than the classical estimation methods. An application of the proposed method is illustrated using a data set gathered from the Centre for Integrated Government Services in Delma Island – UAE to predict the association between perceived quality and the customer satisfaction.  相似文献   

16.
This paper compares methods of estimation for the parameters of a Pareto distribution of the first kind to determine which method provides the better estimates when the observations are censored, The unweighted least squares (LS) and the maximum likelihood estimates (MLE) are presented for both censored and uncensored data. The MLE's are obtained using two methods, In the first, called the ML method, it is shown that log-likelihood is maximized when the scale parameter is the minimum sample value. In the second method, called the modified ML (MML) method, the estimates are found by utilizing the maximum likelihood value of the shape parameter in terms of the scale parameter and the equation for the mean of the first order statistic as a function of both parameters. Since censored data often occur in applications, we study two types of censoring for their effects on the methods of estimation: Type II censoring and multiple random censoring. In this study we consider different sample sizes and several values of the true shape and scale parameters.

Comparisons are made in terms of bias and the mean squared error of the estimates. We propose that the LS method be generally preferred over the ML and MML methods for estimating the Pareto parameter γ for all sample sizes, all values of the parameter and for both complete and censored samples. In many cases, however, the ML estimates are comparable in their efficiency, so that either estimator can effectively be used. For estimating the parameter α, the LS method is also generally preferred for smaller values of the parameter (α ≤4). For the larger values of the parameter, and for censored samples, the MML method appears superior to the other methods with a slight advantage over the LS method. For larger values of the parameter α, for censored samples and all methods, underestimation can be a problem.  相似文献   

17.
Maximum likelihood estimation of prevalence ratios using the log-binomial model is problematic when the estimates are on the boundary of the parameter space. When the model is correct, maximum likelihood is often the method of choice. The authors provide a theorem, formulas, and methodology for obtaining maximum likelihood estimators of the log-binomial model and their estimated standard errors when the solution is on the boundary of the parameter space. Examples are given to illustrate the method.  相似文献   

18.
The Dirichlet process prior allows flexible nonparametric mixture modeling. The number of mixture components is not specified in advance and can grow as new data arrive. However, analyses based on the Dirichlet process prior are sensitive to the choice of the parameters, including an infinite-dimensional distributional parameter G 0. Most previous applications have either fixed G 0 as a member of a parametric family or treated G 0 in a Bayesian fashion, using parametric prior specifications. In contrast, we have developed an adaptive nonparametric method for constructing smooth estimates of G 0. We combine this method with a technique for estimating α, the other Dirichlet process parameter, that is inspired by an existing characterization of its maximum-likelihood estimator. Together, these estimation procedures yield a flexible empirical Bayes treatment of Dirichlet process mixtures. Such a treatment is useful in situations where smooth point estimates of G 0 are of intrinsic interest, or where the structure of G 0 cannot be conveniently modeled with the usual parametric prior families. Analysis of simulated and real-world datasets illustrates the robustness of this approach.  相似文献   

19.
李金昌 《统计研究》1996,13(1):50-55
The paper puts forward two ways of thinking on stratified sampling estimation, the longitudinal auto-egression and multi-compound estimation method. The longitudinal auto-regression method probes into estimate of population mean based on the linear regression relationship between the means of the strata under investigation and ancillary characteristics. The multi-compound estimation method estimates the means of the strata separately by different methods and the population parameter is taken from these estimates. The paper further analyses conditions for the application of these methods; estimates and their error term; advantages and disadvantages and other problems of the two problems.  相似文献   

20.
In an attempt to produce more realistic stress–strength models, this article considers the estimation of stress–strength reliability in a multi-component system with non-identical component strengths based on upper record values from the family of Kumaraswamy generalized distributions. The maximum likelihood estimator of the reliability, its asymptotic distribution and asymptotic confidence intervals are constructed. Bayes estimates under symmetric squared error loss function using conjugate prior distributions are computed and corresponding highest probability density credible intervals are also constructed. In Bayesian estimation, Lindley approximation and the Markov Chain Monte Carlo method are employed due to lack of explicit forms. For the first time using records, the uniformly minimum variance unbiased estimator and the closed form of Bayes estimator using conjugate and non-informative priors are derived for a common and known shape parameter of the stress and strength variates distributions. Comparisons of the performance of the estimators are carried out using Monte Carlo simulations, the mean squared error, bias and coverage probabilities. Finally, a demonstration is presented on how the proposed model may be utilized in materials science and engineering with the analysis of high-strength steel fatigue life data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号