首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
    
It is very important to study the occurrence of high levels of particulate matter due to the potential harm to people''s health and to the environment. In the present work we use a non-homogeneous Poisson model to analyse the rate of exceedances of particulate matter with diameter smaller that 2.5 microns (PM 2.5). Models with and without change-points are considered and they are applied to data from Bogota, Colombia, and Mexico City, Mexico. Results show that whereas in Bogota larger particles pose a more serious problem, in Mexico City, even though nowadays levels are more controlled, in the recent past PM 2.5 were the ones causing serious problems.  相似文献   

2.
    
The authors present theoretical results that show how one can simulate a mixture distribution whose components live in subspaces of different dimension by reformulating the problem in such a way that observations may be drawn from an auxiliary continuous distribution on the largest subspace and then transformed in an appropriate fashion. Motivated by the importance of enlarging the set of available Markov chain Monte Carlo (MCMC) techniques, the authors show how their results can be fruitfully employed in problems such as model selection (or averaging) of nested models, or regeneration of Markov chains for evaluating standard deviations of estimated expectations derived from MCMC simulations.  相似文献   

3.
Students of statistics should be taught the ideas and methods that are widely used in practice and that will help them understand the world of statistics. Today, this means teaching them about Bayesian methods. In this article, I present ideas on teaching an undergraduate Bayesian course that uses Markov chain Monte Carlo and that can be a second course or, for strong students, a first course in statistics.  相似文献   

4.
In this work we study robustness in Bayesian models through a generalization of the Normal distribution. We show new appropriate techniques in order to deal with this distribution in Bayesian inference. Then we propose two approaches to decide, in some applications, if we should replace the usual Normal model by this generalization. First, we pose this dilemma as a model rejection problem, using diagnostic measures. In the second approach we evaluate the model's predictive efficiency. We illustrate those perspectives with a simulation study, a non linear model and a longitudinal data model.  相似文献   

5.
    
It is well known that long-term exposure to high levels of pollution is hazardous to human health. Therefore, it is important to study and understand the behavior of pollutants in general. In this work, we study the occurrence of a pollutant concentration's surpassing a given threshold (an exceedance) as well as the length of time that the concentration stays above it. A general N(t)/D/1 queueing model is considered to jointly analyze those problems. A non-homogeneous Poisson process is used to model the arrivals of clusters of exceedances. Geometric and generalized negative binomial distributions are used to model the amount of time (cluster size) that the pollutant concentration stays above the threshold. A mixture model is also used for the cluster size distribution. The rate function of the non-homogeneous Poisson process is assumed to be of either the Weibull or the Musa–Okumoto type. The selection of the model that best fits the data is performed using the Bayes discrimination method and the sum of absolute differences as well as using a graphical criterion. Results are applied to the daily maximum ozone measurements provided by the monitoring network of the Metropolitan Area of Mexico City.  相似文献   

6.
    
Seoul, the capital city of Korea with over 10 million residents, has been experiencing serious air pollution problems. Previous studies on source apportionment of PM2.5 in Seoul are based on measurements of chemical compositions of PM2.5 from a single monitoring site. In this paper, we analyse PM2.5 concentration data collected from multiple sites in 24 districts of Seoul and estimate regional source profiles using Bayesian multivariate receptor model. The regional source profiles provide information for the identification of major PM2.5 sources as well as the regions relatively more seriously affected by each source than other regions. These regional characteristics relevant to PM2.5 can help establish effective, customised, region-specific PM2.5 control strategies for each region rather than general strategies that apply to every region of Seoul.  相似文献   

7.
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism.  相似文献   

8.
    
Mixture models are flexible tools in density estimation and classification problems. Bayesian estimation of such models typically relies on sampling from the posterior distribution using Markov chain Monte Carlo. Label switching arises because the posterior is invariant to permutations of the component parameters. Methods for dealing with label switching have been studied fairly extensively in the literature, with the most popular approaches being those based on loss functions. However, many of these algorithms turn out to be too slow in practice, and can be infeasible as the size and/or dimension of the data grow. We propose a new, computationally efficient algorithm based on a loss function interpretation, and show that it can scale up well in large data set scenarios. Then, we review earlier solutions which can scale up well for large data set, and compare their performances on simulated and real data sets. We conclude with some discussions and recommendations of all the methods studied.  相似文献   

9.
    
In applications of Gaussian processes (GPs) where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. This is normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations involving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC algorithms rejecting a considerable amount of expensive proposals, this paper develops an alternative inference framework based on adaptive multiple importance sampling (AMIS). In particular, this paper studies the application of AMIS for GPs in the case of a Gaussian likelihood, and proposes a novel pseudo-marginal-based AMIS algorithm for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios.  相似文献   

10.
Common loss functions used for the restoration of grey scale images include the zero–one loss and the sum of squared errors. The corresponding estimators, the posterior mode and the posterior marginal mean, are optimal Bayes estimators with respect to their way of measuring the loss for different error configurations. However, both these loss functions have a fundamental weakness: the loss does not depend on the spatial structure of the errors. This is important because a systematic structure in the errors can lead to misinterpretation of the estimated image. We propose a new loss function that also penalizes strong local sample covariance in the error and we discuss how the optimal Bayes estimator can be estimated using a two-step Markov chain Monte Carlo and simulated annealing algorithm. We present simulation results for some artificial data which show improvement with respect to small structures in the image.  相似文献   

11.
When MCMC methods for Bayesian spatiotemporal modeling are applied to large geostatistical problems, challenges arise as a consequence of memory requirements, computing costs, and convergence monitoring. This article describes the parallelization of a reparametrized and marginalized posterior sampling (RAMPS) algorithm, which is carefully designed to generate posterior samples efficiently. The algorithm is implemented using the Parallel Linear Algebra Package (PLAPACK). The scalability of the algorithm is investigated via simulation experiments that are implemented using a cluster with 25 processors. The usefulness of the method is illustrated with an application to sulfur dioxide concentration data from the Air Quality System database of the U.S. Environmental Protection Agency.  相似文献   

12.
Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.  相似文献   

13.
Multivariate mixtures of normals with unknown number of components   总被引:2,自引:0,他引:2  
We present full Bayesian analysis of finite mixtures of multivariate normals with unknown number of components. We adopt reversible jump Markov chain Monte Carlo and we construct, in a manner similar to that of Richardson and Green (1997), split and merge moves that produce good mixing of the Markov chains. The split moves are constructed on the space of eigenvectors and eigenvalues of the current covariance matrix so that the proposed covariance matrices are positive definite. Our proposed methodology has applications in classification and discrimination as well as heterogeneity modelling. We test our algorithm with real and simulated data.  相似文献   

14.
    
The rjmcmc package for R implements the post‐processing reversible jump Markov chain Monte Carlo (MCMC) algorithm of Barker & Link. MCMC output from each of the models is used to estimate posterior model probabilities and Bayes factors. Automatic differentiation is used to simplify implementation. The package is demonstrated on two examples.  相似文献   

15.
  总被引:1,自引:1,他引:0  
Time-varying GARCH-M models are commonly employed in econometrics and financial economics. Yet the recursive nature of the conditional variance makes likelihood analysis of these models computationally infeasible. This article outlines the issues and suggests to employ a Markov chain Monte Carlo algorithm which allows the calculation of a classical estimator via the simulated EM algorithm or a simulated Bayesian solution in only O(T) computational operations, where T is the sample size. Furthermore, the theoretical dynamic properties of a time-varying-parameter EGARCH(1,1)-M are derived. We discuss them and apply the suggested Bayesian estimation to three major stock markets.  相似文献   

16.
In this paper, we adopt the Bayesian approach to expectile regression employing a likelihood function that is based on an asymmetric normal distribution. We demonstrate that improper uniform priors for the unknown model parameters yield a proper joint posterior. Three simulated data sets were generated to evaluate the proposed method which show that Bayesian expectile regression performs well and has different characteristics comparing with Bayesian quantile regression. We also apply this approach into two real data analysis.  相似文献   

17.
    
Methods for choosing a fixed set of knot locations in additive spline models are fairly well established in the statistical literature. The curse of dimensionality makes it nontrivial to extend these methods to nonadditive surface models, especially when there are more than a couple of covariates. We propose a multivariate Gaussian surface regression model that combines both additive splines and interactive splines, and a highly efficient Markov chain Monte Carlo algorithm that updates all the knot locations jointly. We use shrinkage prior to avoid overfitting with different estimated shrinkage factors for the additive and surface part of the model, and also different shrinkage parameters for the different response variables. Simulated data and an application to firm leverage data show that the approach is computationally efficient, and that allowing for freely estimated knot locations can offer a substantial improvement in out‐of‐sample predictive performance.  相似文献   

18.
    
This article considers misclassification of categorical covariates in the context of regression analysis; if unaccounted for, such errors usually result in mis-estimation of model parameters. With the presence of additional covariates, we exploit the fact that explicitly modelling non-differential misclassification with respect to the response leads to a mixture regression representation. Under the framework of mixture of experts, we enable the reclassification probabilities to vary with other covariates, a situation commonly caused by misclassification that is differential on certain covariates and/or by dependence between the misclassified and additional covariates. Using Bayesian inference, the mixture approach combines learning from data with external information on the magnitude of errors when it is available. In addition to proving the theoretical identifiability of the mixture of experts approach, we study the amount of efficiency loss resulting from covariate misclassification and the usefulness of external information in mitigating such loss. The method is applied to adjust for misclassification on self-reported cocaine use in the Longitudinal Studies of HIV-Associated Lung Infections and Complications.  相似文献   

19.
We consider the issue of sampling from the posterior distribution of exponential random graph (ERG) models and other statistical models with intractable normalizing constants. Existing methods based on exact sampling are either infeasible or require very long computing time. We study a class of approximate Markov chain Monte Carlo (MCMC) sampling schemes that deal with this issue. We also develop a new Metropolis–Hastings kernel to sample sparse large networks from ERG models. We illustrate the proposed methods on several examples.  相似文献   

20.
Statistical methods are formulated for fitting and testing percolation-based, spatio-temporal models that are generally applicable to biological or physical processes that evolve in spatially distributed populations. The approach is developed and illustrated in the context of the spread of Rhizoctonia solani, a fungal pathogen, in radish but is readily generalized to other scenarios. The particular model considered represents processes of primary and secondary infection between nearest-neighbour hosts in a lattice, and time-varying susceptibility of the hosts. Bayesian methods for fitting the model to observations of disease spread through space and time in replicate populations are developed. These use Markov chain Monte Carlo methods to overcome the problems associated with partial observation of the process. We also consider how model testing can be achieved by embedding classical methods within the Bayesian analysis. In particular we show how a residual process, with known sampling distribution, can be defined. Model fit is then examined by generating samples from the posterior distribution of the residual process, to which a classical test for consistency with the known distribution is applied, enabling the posterior distribution of the P-value of the test used to be estimated. For the Rhizoctonia-radish system the methods confirm the findings of earlier non-spatial analyses regarding the dynamics of disease transmission and yield new evidence of environmental heterogeneity in the replicate experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号