首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Confidence statements about location (or scale) parameters associated with K populations, which may be used in making selection decisions about those populations, are investigated. When a subset of fixed size t is selected from the K populations a lower bound is obtained for the minimum selected parameter as a function of the maximum non-selected parameter. Tables are produced for the normal means case when the variance is common but unknown. It is pointed out that these tables may be used to find confidence intervals discussed by Hsu (1984  相似文献   

2.
The present paper deals with sensitivity analysis in maximum likelihood factor analysis. To investigate the influence of a small change of data we derive theoretical influence functions I(x; LLT ) and I(x; Δ) for a common variance matrix T= LLT and a unique variance matrix Δ respectively. Numerical examples are shown to illustrate our procedure.  相似文献   

3.
ABSTRACT

It is well known that ignoring heteroscedasticity in regression analysis adversely affects the efficiency of estimation and renders the usual procedure for constructing prediction intervals inappropriate. In some applications, such as off-line quality control, knowledge of the variance function is also of considerable interest in its own right. Thus the modeling of variance constitutes an important part of regression analysis. A common practice in modeling variance is to assume that a certain function of the variance can be closely approximated by a function of a known parametric form. The logarithm link function is often used even if it does not fit the observed variation satisfactorily, as other alternatives may yield negative estimated variances. In this paper we propose a rich class of link functions for more flexible variance modeling which alleviates the major difficulty of negative variances. We suggest also an alternative analysis for heteroscedastic regression models that exploits the principle of “separation” discussed in Box (Signal-to-Noise Ratios, Performance Criteria and Transformation. Technometrics 1988, 30, 1–31). The proposed method does not require any distributional assumptions once an appropriate link function for modeling variance has been chosen. Unlike the analysis in Box (Signal-to-Noise Ratios, Performance Criteria and Transformation. Technometrics 1988, 30, 1–31), the estimated variances and their associated asymptotic variances are found in the original metric (although a transformation has been applied to achieve separation in a different scale), making interpretation of results considerably easier.  相似文献   

4.
For quadratic regression on the hypercube, G—efficiencies are often used in the selection process of an experimental design. To calculate a design's G—efficiency, it is necessary to maximize the prediction variance over the experimental design region. However, it is common to approximate a G—efficiency. This is achieved by calculating the prediction variances generated from a subset of points in the design space and taking the maximum to estimate the maximum prediction variance. This estimate is then applied to approximate the G—efficiency. In this paper, it will be shown that over the class of central composite designs (CCDs) on the hypercube. the prediction variance can be expressed in a closed-form. An exact value of the maximum prediction variance can then be determined by evaluating this closed-form expression over a finite subset of barycentric points. Tables of exact G—efficiencies will be presented. Design optimality criteria, quadratic regression on the hypercube, and the structures of the design matrix X, X'X, and (X'X)?1 for any CCD will be discussed.  相似文献   

5.
In this article the outgoing quality and the total inspection for the chain sampling plan ChSP-4(c 1, c 2) are introduced as well-defined random variables. The probability distributions of outgoing quality and total inspection are stated based on total rectification of non conforming units. The variances of these random variables are studied. The aim of this article is to develop procedures for minimum variance ChSP-4(c 1, c 2) sampling plans and their determination. In addition to minimum variance sampling plans, a procedure is developed for designing plans with a designated maximum variance, a VOQL (Variance of Outgoing Quality Limit) plan. The VOQL concept is analogous to the AOQL (Average Outgoing Quality Limit) except in the VOQL plan, it is the maximum variance which is established instead of the usual maximum AOQ.  相似文献   

6.
The pooled variance of p samples presumed to have been obtained from p populations having common variance σ2, has invariably been adopted as the default estimator for σ2. In this paper, alternative estimators of the common population variance are developed. These estimators are biased and have lower mean-squared error values than . The comparative merit of these estimators over the unbiased estimator is explored using relative efficiency (a ratio of mean-squared error values).  相似文献   

7.
8.
This paper considers the problem of estimating the probability P = Pr(X < Y) when X and Y are independent exponential random variables with unequal scale parameters and a common location parameter. Uniformly minimum variance unbiased estimator of P is obtained. The asymptotic distribution of the maximum likelihood estimator is obtained and then the asymptotic equivalence of the two estimators is established. Performance of the two estimators for moderate sample sizes is studied by Monte Carlo simulation. An approximate interval estimator is also obtained.  相似文献   

9.
Let μ be a positive measure concentrated on R+ generating a natural exponential family (NEF) F with quadratic variance function VF(m), m being the mean parameter of F. It is shown that v(dx) = (γ+x)μ(γ ≥ 0) (γ ≥ 0) generates a NEF G whose variance function is of the form l(m)Δ+cΔ(m), where l(m) is an affine function of m, Δ(m) is a polynomial in m (the mean of G) of degree 2, and c is a constant. The family G turns out to be a finite mixture of F and its length-biased family. We also examine the cases when F has cubic variance function and show that for suitable choices of γ the family G has variance function of the form P(m) + Q(m)m where P, Q are polynomials in m of degree m2 while Δ is an affine function of m. Finally we extend the idea to two dimensions by considering a bivariate Poisson and bivariate gamma mixture distribution.  相似文献   

10.
This paper proposes useful exact bounds for the parameters of the double sampling S2 chart with known process variance and it also investigates the properties of the double sampling S2 chart with estimated process variance, in terms of the average run length, the standard deviation of the run length and the average sample size, providing a numerical comparison with the known process variance case. It also provides guidelines to systematically design the double sampling S2 chart both with known and estimated process variance and proposes two optimal design procedures with estimated process variance, for (a) minimizing the out-of-control average run length and (b) minimizing the out-of-control average sample size.  相似文献   

11.
The most common charting procedure used for monitoring the variance of the distribution of a quality characteristic is the S control chart. As a Shewhart-type control chart, it is relatively insensitive in the quick detection of small and moderate shifts in process variance. The performance of the S chart can be improved by supplementing it with runs rules or by varying the sample size and the sampling interval. In this work, we introduce and study one-sided adaptive S control charts, supplemented or not with one powerful runs rule, for detecting increases or decreases in process variation. The properties of the proposed control schemes are obtained by using a Markov chain approach. Furthermore, a practical guidance for the choice of the most suitable control scheme is also provided.  相似文献   

12.
Stuart's (1953) measure of association in contingency tables, tC, based on Kendall's (1962) t, is compared with Goodman and Kruskal's (1954, 1959, 1963, 1972) measure G. First, it is proved that |G| ≥ |tC|; and then it is shown that the upper bound for the asymptotic variance of G is not necessarily always smaller than the upper bound for the asymptotic variance of tC. It is proved, however, that the upper bound for the coefficient of variation of G cannot be larger in absolute value than the upper bound for the coefficient of variation of tC. The asymptotic variance of tC is also derived and hence we obtain an upper bound for this asymptotic variance which is sharper than Stuart's (1953) upper bound.  相似文献   

13.
Survey sampling textbooks often refer to the Sen–Yates–Grundy variance estimator for use with without-replacement unequal probability designs. This estimator is rarely implemented because of the complexity of determining joint inclusion probabilities. In practice, the variance is usually estimated by simpler variance estimators such as the Hansen–Hurwitz with replacement variance estimator; which often leads to overestimation of the variance for large sampling fractions that are common in business surveys. We will consider an alternative estimator: the Hájek (1964 Hájek J 1981 Sampling from a Finite Population New York: Marcel Dekker  [Google Scholar]) variance estimator that depends on the first-order inclusion probabilities only and is usually more accurate than the Hansen–Hurwitz estimator. We review this estimator and show its practical value. We propose a simple alternative expression; which is as simple as the Hansen–Hurwitz estimator. We also show how the Hájek estimator can be easily implemented with standard statistical packages.  相似文献   

14.
Let X be a continuous nonnegative random variable with finite first and second moments and a continuous pdf that is positive on the interior of its support. A nonzero limiting density at the origin and a coefficient of variation (CV) greater than 1 are shown to be sufficient conditions for the distribution truncated below at t > 0 to have a variance greater than the variance of the full distribution. Distributions that satisfy these conditions include those with decreasing hazard rates (e.g., the gamma and Weibull distributions with shape parameters less than 1) and the beta distribution with parameter values p and q for which q > p(p + q + 1). The bound T for which truncation at 0 < t < T increases the variance relative to the full distribution is shown to be greater than the (1 — 1/CV)th percentile of the full distribution.  相似文献   

15.
The product method of estimation (Murthy, 1964) complements the ratio method when the study variate, y, and an auxiliary variate, x, have negative correlation. However, such cases are not frequent in survey practice. This paper suggests a simple transformation of x in the more common situation of positive correlation between y and x, to permit a product method of estimation rather than a ratio method. This leads to the advantage that the bias and mean square error have exact expressions. The technique developed by Quenouille (1956) and applied by Shukla (1976) is used for making the estimator unbiased. The minimum variance situation is investigated. Two numerical examples are included. The case of negative correlation is also examined.  相似文献   

16.
This paper deals with the estimation of R=P[X<Y] when X and Y come from two independent generalized logistic distributions with different parameters. The maximum-likelihood estimator (MLE) and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Assuming that the common scale parameter is known, the MLE, uniformly minimum variance unbiased estimator, Bayes estimation and confidence interval of R are obtained. The MLE of R, asymptotic distribution of R in the general case, is also discussed. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real data set has also been presented for illustrative purposes.  相似文献   

17.
A consecutive k-out-of-n: G system consists of n linearly ordered components functions if and only if at least k consecutive components function. In this article we investigate the consecutive k-out-of-n: G system in a setup of multicomponent stress-strength model. Under this setup, a system consists of n components functions if and only if there are at least k consecutive components survive a common random stress. We consider reliability and its estimation of such a system whenever there is a change and no change in strength. We provide minimum variance unbiased estimation of system reliability when the stress and strength distributions are exponential with unknown scale parameters. A nonparametric minimum variance unbiased estimator is also provided.  相似文献   

18.
The aim of this paper is to study the estimation of the reliability R=P(Y<X) when X and Y are independent random variables that follow Kumaraswamy's distribution with different parameters. If we assume that the first shape parameter is common and known, the maximum-likelihood estimator (MLE), the exact confidence interval and the uniformly minimum variance unbiased estimator of R are obtained. Moreover, when the first parameter is common but unknown, MLEs, Bayes estimators, asymptotic distributions and confidence intervals for R are derived. Furthermore, Bayes and empirical Bayes estimators for R are obtained when the first parameter is common and known. Finally, when all four parameters are different and unknown, the MLE of R is obtained. Monte Carlo simulations are performed to compare the different proposed methods and conclusions on the findings are given.  相似文献   

19.
Elvia Flores 《Statistics》2013,47(5):431-454
In this work, we consider a non-parametric estimator of the variance in one-dimensional diffusion models or, more generally, in Itô processes with a deterministic diffusion term and a general non-anticipative drift. The estimation is based on the quadratic variation of discrete time observations over a finite interval. In particular, a central limit theorem (CLT) is proved for the deviation in L p norm (p≥; 1) between the variance and this estimator. The method of the proof consists in writing the L p norm of the deviation, when the drift term is equal to zero, as a sum of 4-dependent random variables. The moments are then computed by means of a Gaussian approximation and a CLT for m-dependent random variables is applied. The convergence is stable in law, this allows the result for processes with general drifts to be obtained, by using Girsanov's formula.  相似文献   

20.
Abstract

In this article, we obtain point and interval estimates of multicomponent stress-strength reliability model of an s-out-of-j system using classical and Bayesian approaches by assuming both stress and strength variables follow a Chen distribution with a common shape parameter which may be known or unknown. The uniformly minimum variance unbiased estimator of reliability is obtained analytically when the common parameter is known. The behavior of proposed reliability estimates is studied using the estimated risks through Monte Carlo simulations and comments are obtained. Finally, a data set is analyzed for illustrative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号