首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Extreme quantile estimation plays an important role in risk management and environmental statistics among other applications. A popular method is the peaks-over-threshold (POT) model that approximate the distribution of excesses over a high threshold through generalized Pareto distribution (GPD). Motivated by a practical financial risk management problem, we look for an appropriate prior choice for Bayesian estimation of the GPD parameters that results in better quantile estimation. Specifically, we propose a noninformative matching prior for the parameters of a GPD so that a specific quantile of the Bayesian predictive distribution matches the true quantile in the sense of Datta et al. (2000).  相似文献   

2.
Generalized Pareto distribution (GPD) is widely used to model exceedances over thresholds. In this paper, we propose a new method, called weighted non linear least squares (WNLS), to estimate the parameters of the three-parameter GPD. Some asymptotic results of the proposed method are provided. An extensive simulation is carried out to evaluate the finite sample behaviour of the proposed method and to compare the behaviour with other methods suggested in the literature. The simulation results show that WNLS outperforms other methods in general situations. Finally, the WNLS is applied to analysis the real-life data.  相似文献   

3.
Generalized Pareto distribution (GPD) has been widely used to model exceedances over thresholds. In this article we propose a new method called weighted nonlinear least squares (WNLS) to estimate the parameters of the GPD. The WNLS estimators always exist and are simple to compute. Some asymptotic results of the proposed method are provided. The simulation results indicate that the proposed method performs well compared to existing methods in terms of mean squared error and bias. Its advantages are further illustrated through the analysis of two real data sets.  相似文献   

4.
Parameter estimation of the generalized Pareto distribution—Part II   总被引:1,自引:0,他引:1  
This is the second part of a paper which focuses on reviewing methods for estimating the parameters of the generalized Pareto distribution (GPD). The GPD is a very important distribution in the extreme value context. It is commonly used for modeling the observations that exceed very high thresholds. The ultimate success of the GPD in applications evidently depends on the parameter estimation process. Quite a few methods exist in the literature for estimating the GPD parameters. Estimation procedures, such as the maximum likelihood (ML), the method of moments (MOM) and the probability weighted moments (PWM) method were described in Part I of the paper. We shall continue to review methods for estimating the GPD parameters, in particular methods that are robust and procedures that use the Bayesian methodology. As in Part I, we shall focus on those that are relatively simple and straightforward to be applied to real world data.  相似文献   

5.
In this article, we take a brief overview of different functional forms of generalized Poisson distribution (GPD) and various methods of its parameter estimation found in the literature. We compare the method of moment estimation (ME) and maximum likelihood estimation (MLE) of parameters of GPD through simulation study in terms of bias, MSE and covariance. To simulate random numbers from GPD, we develop a Matlab function gpoissrnd(). The simulation study leads to the important conclusion that the ME performs better or equally good as compared to MLE when sample size is small.

Further we fit the GPD to various datasets in literature using both estimation methods and observe that the results do not differ significantly even though the sample size is large. Overall, we conclude that for GPD, use of ME in place of MLE will lead to almost similar results. The computational simplicity in calculation of ME as compared to MLE also gives support to the use of ME in case of GPD for practitioners.  相似文献   


6.
The generalized Pareto distribution (GPD) has been widely used to model exceedances over a threshold. This article generalizes the method of generalized probability weighted moments, and applies this method to estimate the parameters of GPD. The estimator is computationally easy. Some asymptotic results of this method are provided. Two simulations are carried out to investigate the behavior of this method and to compare them with other methods suggested in the literature. The simulation results show that the performance of the proposed method is better than some other methods. Finally, this method is applied to analyze a real-life data.  相似文献   

7.
The generalized Pareto distribution (GPD) has been widely used in the extreme value framework. The success of the GPD when applied to real data sets depends substantially on the parameter estimation process. Several methods exist in the literature for estimating the GPD parameters. Mostly, the estimation is performed by maximum likelihood (ML). Alternatively, the probability weighted moments (PWM) and the method of moments (MOM) are often used, especially when the sample sizes are small. Although these three approaches are the most common and quite useful in many situations, their extensive use is also due to the lack of knowledge about other estimation methods. Actually, many other methods, besides the ones mentioned above, exist in the extreme value and hydrological literatures and as such are not widely known to practitioners in other areas. This paper is the first one of two papers that aim to fill in this gap. We shall extensively review some of the methods used for estimating the GPD parameters, focusing on those that can be applied in practical situations in a quite simple and straightforward manner.  相似文献   

8.
欧阳资生 《统计研究》2011,28(11):87-92
 地质灾害的频繁发生已引起了社会各界的高度关注。本文以湖南省娄底市地质灾害损失数据为样本,借助广义Pareto分布和对数正态分布对地质灾害损失分布进行刻画,建立了一个分段的地质灾害损失分布模型,然后讨论了地质灾害损失的纯保费和最大可能损失的估计问题,得到了一些有意义的结果。  相似文献   

9.
The POT (Peaks-Over-Threshold) approach consists of using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over thresholds. In this article, we establish the asymptotic normality of the well-known extreme quantile estimators based on this POT method, under very general assumptions. As an illustration, from this result, we deduce the asymptotic normality of the POT extreme quantile estimators in the case where the maximum likelihood (ML) or the generalized probability-weighted moments (GPWM) methods are used. Simulations are provided in order to compare the efficiency of these estimators based on ML or GPWM methods with classical ones proposed in the literature.  相似文献   

10.
In many applications (geosciences, insurance, etc.), the peaks-over-thresholds (POT) approach is one of the most widely used methodology for extreme quantile inference. It mainly consists of approximating the distribution of exceedances above a high threshold by a generalized Pareto distribution (GPD). The number of exceedances which is used in the POT inference is often quite small and this leads typically to a high volatility of the estimates. Inspired by perfect sampling techniques used in simulation studies, we define a folding procedure that connects the lower and upper parts of a distribution. A new extreme quantile estimator motivated by this theoretical folding scheme is proposed and studied. Although the asymptotic behaviour of our new estimate is the same as the classical (non-folded) one, our folding procedure reduces significantly the mean squared error of the extreme quantile estimates for small and moderate samples. This is illustrated in the simulation study. We also apply our method to an insurance dataset.  相似文献   

11.
Many distributions have been used as lifetime models. In this article, we propose a new three-parameter Weibull–Pareto distribution, which can produce the most important hazard rate shapes, namely, constant, increasing, decreasing, bathtub, and upsidedown bathtub. Various structural properties of the new distribution are derived including explicit expressions for the moments and incomplete moments, Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, and generating and quantile functions. The Rényi and q entropies are also derived. We obtain the density function of the order statistics and their moments. The model parameters are estimated by maximum likelihood and the observed information matrix is determined. The usefulness of the new model is illustrated by means of two real datasets on Wheaton river flood and bladder cancer. In the two applications, the new model provides better fits than the Kumaraswamy–Pareto, beta-exponentiated Pareto, beta-Pareto, exponentiated Pareto, and Pareto models.  相似文献   

12.
A typical added variable plot is a commonly used plot in assessing the accuracy of a normal linear model. This plot is often used to evaluate the effect of adding an explanatory variable into the model and to detect possibly high leverage points or influential observations on the added variable. However, this type of plot is generally in doubt, once the normal distributional assumptions are violated. In this article, we extend the robust likelihood technique introduced by Royall and Tsou [11] to propose a robust added variable plot. The validity of this diagnostic plot requires no knowledge of the true underlying distributions so long as their second moments exist. The usefulness of the robust graphical approach is demonstrated through a few illustrations and simulations.  相似文献   

13.
The POT (peaks-over-threshold) approach consists in using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over a threshold. In this paper, we consider this approximation using a generalized probability-weighted moments (GPWM) method. We study the asymptotic behaviour of our new estimators and also the functional bias of the GPD as an estimate of the distribution function of the excesses. A simulation study is provided in order to appreciate the efficiency of our approach.  相似文献   

14.
In this paper, we propose to monitor a Markov chain sampler using the cusum path plot of a chosen one-dimensional summary statistic. We argue that the cusum path plot can bring out, more effectively than the sequential plot, those aspects of a Markov sampler which tell the user how quickly or slowly the sampler is moving around in its sample space, in the direction of the summary statistic. The proposal is then illustrated in four examples which represent situations where the cusum path plot works well and not well. Moreover, a rigorous analysis is given for one of the examples. We conclude that the cusum path plot is an effective tool for convergence diagnostics of a Markov sampler and for comparing different Markov samplers.  相似文献   

15.
16.
In recent years, several attempts have been made to characterize the generalized Pareto distribution (GPD) based on the properties of order statistics and record values. In the present article, we give a characterization result on GPD based on the spacing of generalized order statistics.  相似文献   

17.
ABSTRACT

In this article, we derive exact explicit expressions for the single, double, triple, and quadruple moments of order statistics from the generalized Pareto distribution (GPD). Also, we obtain the best linear unbiased estimates of the location and scale parameters (BLUE's) of the GPD. We then use these results to determine the mean, variance, and coefficients of skewness and kurtosis of certain linear functions of order statistics. These are then utilized to develop approximate confidence intervals for the generalized Pareto parameters using Edgeworth approximation and compare them with those based on Monte Carlo simulations. To show the usefulness of our results, we also present a numerical example. Finally, we give an application to real data.  相似文献   

18.
Analysis of massive datasets is challenging owing to limitations of computer primary memory. Composite quantile regression (CQR) is a robust and efficient estimation method. In this paper, we extend CQR to massive datasets and propose a divide-and-conquer CQR method. The basic idea is to split the entire dataset into several blocks, applying the CQR method for data in each block, and finally combining these regression results via weighted average. The proposed approach significantly reduces the required amount of primary memory, and the resulting estimate will be as efficient as if the entire data set is analysed simultaneously. Moreover, to improve the efficiency of CQR, we propose a weighted CQR estimation approach. To achieve sparsity with high-dimensional covariates, we develop a variable selection procedure to select significant parametric components and prove the method possessing the oracle property. Both simulations and data analysis are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

19.
Recent developments in engineering techniques for spatial data collection such as geographic information systems have resulted in an increasing need for methods to analyze large spatial datasets. These sorts of datasets can be found in various fields of the natural and social sciences. However, model fitting and spatial prediction using these large spatial datasets are impractically time-consuming, because of the necessary matrix inversions. Various methods have been developed to deal with this problem, including a reduced rank approach and a sparse matrix approximation. In this article, we propose a modification to an existing reduced rank approach to capture both the large- and small-scale spatial variations effectively. We have used simulated examples and an empirical data analysis to demonstrate that our proposed approach consistently performs well when compared with other methods. In particular, the performance of our new method does not depend on the dependence properties of the spatial covariance functions.  相似文献   

20.
In recent years, several attempts have been made to characterize the generalized Pareto distributions (GPD) based on the properties of order statistics and record values. In the present article, we give some characterization results on GPD based on order statistics and generalized order statistics. Some characterizations of uniform distribution based on expectation of some functions of order statistics are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号