首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The performance of attributes control charts is usually evaluated under the assumption of known process parameters (i.e., the nominal proportion of non conforming units or the nominal average number of nonconformities). However, in practice, these process parameters are rarely known and have to be estimated from an in-control Phase I data set. The major contributions of this paper are (a) the derivation of the run length properties of the Run Rules Phase II c and np charts with estimated parameters, particularly focusing on the ARL, SDRL, and 0.05, 0.5, and 0.95 quantiles of the run length distribution; (b) the investigation of the number m of Phase I samples that is needed by these charts in order to obtain similar in-control ARLs to the known parameters case; and (c) the proposition of new specific chart parameters that allow these charts to have approximately the same in-control ARLs as the ones obtained in the known parameters case.  相似文献   

2.
In practice, different practitioners will use different Phase I samples to estimate the process parameters, which will lead to different Phase II control chart's performance. Researches refer to this variability as between-practitioners-variability of control charts. Since between-practitioners-variability is important in the design of the CUSUM median chart with estimated process parameters, the standard deviation of average run length (SDARL) will be used to study its properties. It is shown that the CUSUM median chart requires a larger amount of Phase I samples to sufficiently reduce the variation in the in-control ARL of the CUSUM median chart. Considering the limitation of the amount of the Phase I samples, a bootstrap approach is also used here to adjust the control limits of the CUSUM median chart. Comparisons are made for the CUSUM and Shewhart median charts with estimated parameters when using the adjusted- and unadjusted control limits and some conclusions are made.  相似文献   

3.
Shewhart and EWMA control charts can be suitably combined to obtain a simple monitoring scheme sensitive to both large and small shifts in the process mean. So far, the performance of the combined Shewhart–EWMA (CSEWMA) has been investigated under the assumption that the process parameters are known. However, parameters are often estimated from reference Phase I samples. Since chart performances may be even largely affected by estimation errors, we study the behaviour of the CSEWMA with estimated parameters in both in- and out-of-control situations. Comparisons with standard Shewhart and EWMA charts are presented. Recommendations are given for Phase I sample size requirements necessary to achieve desired in-control performance.  相似文献   

4.
In this paper, we study the effect of estimating the vector of means and the variance–covariance matrix on the performance of two of the most widely used multivariate cumulative sum (CUSUM) control charts, the MCUSUM chart proposed by Crosier [Multivariate generalizations of cumulative sum quality-control schemes, Technometrics 30 (1988), pp. 291–303] and the MC1 chart proposed by Pignatiello and Runger [Comparisons of multivariate CUSUM charts, J. Qual. Technol. 22 (1990), pp. 173–186]. Using simulation, we investigate and compare the in-control and out-of-control performances of the competing charts in terms of the average run length measure. The in-control and out-of-control performances of the competing charts deteriorate significantly if the estimated parameters are used with control limits intended for known parameters, especially when only a few Phase I samples are used to estimate the parameters. We recommend the use of the MC1 chart over that of the MCUSUM chart if the parameters are estimated from a small number of Phase I samples.  相似文献   

5.
ABSTRACT

The effect of parameters estimation on profile monitoring methods has only been studied by a few researchers and only the assumption of a normal response variable has been tackled. However, in some practical situation, the normality assumption is violated and the response variable follows a discrete distribution such as Poisson. In this paper, we evaluate the effect of parameters estimation on the Phase II monitoring of Poisson regression profiles by considering two control charts, namely the Hotelling’s T2 and the multivariate exponentially weighted moving average (MEWMA) charts. Simulation studies in terms of the average run length (ARL) and the standard deviation of the run length (SDRL) are carried out to assess the effect of estimated parameters on the performance of Phase II monitoring approaches. The results reveal that both in-control and out-of-control performances of these charts are adversely affected when the regression parameters are estimated.  相似文献   

6.
We evaluate and compare the performance of Phase II simple linear regression profile approaches when only two observations are used to establish each profile. We propose an EWMA control chart based on average squared deviations from the in-control line, to be used in conjunction with two EWMA control charts based on the slope and Y-intercept estimators, to monitor changes in the three regression model parameters, i.e., the slope, intercept and variance. Simulations establish that the performance of the proposed technique is generally better than that of other approaches in detecting parameter shifts.  相似文献   

7.
Self-starting control charts have been proposed in the literature to allow process monitoring when only a small amount of relevant data is available. In fact, self-starting charts are useful in monitoring a process quickly, without having to collect a sizable Phase I sample for estimating the in-control process parameters. In this paper, a new self-starting control charting procedure is proposed in which first an effective initial sample is chosen from the perspective of Six Sigma quality, then the successive sample means are either pooled or not pooled (sometimes pooling procedure) for computing next Q-statistics depending upon its signal. It is observed that the sample statistics obtained so from this in-control Phase I situation can serve as more efficient estimators of unknown parameters for Phase II monitoring. An example is considered to illustrate the construction of the proposed chart and to compare its performance with the existing ones.  相似文献   

8.
This paper studies the effects of non-normality and autocorrelation on the performances of various individuals control charts for monitoring the process mean and/or variance. The traditional Shewhart X chart and moving range (MR) chart are investigated as well as several types of exponentially weighted moving average (EWMA) charts and combinations of control charts involving these EWMA charts. It is shown that the combination of the X and MR charts will not detect small and moderate parameter shifts as fast as combinations involving the EWMA charts, and that the performana of the X and MR charts is very sensitive to the normality assumption. It is also shown that certain combinations of EWMA charts can be designed to be robust to non-normality and very effective at detecting small and moderate shifts in the process mean and/or variance. Although autocorrelation can have a significant effect on the in-control performances of these combinations of EWMA charts, their relative out-of-control performances under independence are generally maintained for low to moderate levels of autocorrelation.  相似文献   

9.
Control charts designed for the properties of non conformities, also called p control charts, are powerful tools used for monitoring a performance of the fraction of non conforming units. Constructing a p chart is often based on the assumption that the in-control proportion of non conforming items (p 0) is known. In practice, the value of p 0 is rarely known and is frequently replaced by an estimate from an in-control reference sample in Phase I. This article investigates the effects of sample sizes in both Phase I and Phase II on the performance of p control charts. The conditional and marginal run length distributions are derived and the corresponding numerical studies are conducted. Moreover, the minimal sample sizes required in Phases I and II to ensure adequate statistical performance are proposed when p 0 = 0.1 and 0.005.  相似文献   

10.
The existing synthetic exponential control charts are based on the assumption of known in-control parameter. However, the in-control parameter has to be estimated from a Phase I dataset. In this article, we use the exact probability distribution, especially the percentiles, mean, and standard deviation of the conditional average run length (ARL) to evaluate the effect of parameter estimation on the performance of the Phase II synthetic exponential charts. This approach accounts for the variability in the conditional ARL values of the synthetic chart obtained by different practitioners. Since parameter estimation results in more false alarms than expected, we develop an exact method to design the adjusted synthetic charts with desired conditional in-control performance. Results of known and unknown in-control parameter cases show that the control limit of the conforming run length sub-chart of the synthetic chart should be as small as possible.  相似文献   

11.
ABSTRACT

In this paper, we propose a control chart to monitor the Weibull shape parameter where the observations are censored due to competing risks. We assume that the failure occurs due to two competing risks that are independent and follow Weibull distribution with different shape and scale parameters. The control charts are proposed to monitor one or both of the shape parameters of competing risk distributions and established based on the conditional expected values. The proposed control chart for both shape parameters is used in certain situations and allows to monitor both shape parameters in only one chart. The control limits depend on the sample size, number of failures due to each risk and the desired stable average run length (ARL). We also consider the estimation problem of the target parameters when the Phase I sample is incomplete. We assumed that some of the products that fail during the life testing have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the expectation-maximization (EM) algorithm is proposed to estimate the parameters. For both cases, with and without masking, the behaviour of ARLs of charts is studied through the numerical methods. The influence of masking on the performance of proposed charts is also studied through a simulation study. An example illustrates the applicability of the proposed charts.  相似文献   

12.
ABSTRACT

In profile monitoring, control charts are proposed to detect unanticipated changes, and it is usually assumed that the in-control parameters are known. However, due to the characteristics of a system or process, the prespecified changes would appear in the process. Moreover, in most applications, the in-control parameters are usually unknown. To overcome these issues, we develop the zone control charts with estimated parameters to detect small shifts of these prespecified changes. The effects of estimation error have been investigated on the performance of the proposed charts. To account for the practitioner-to-practitioner variability, the expected average run length (ARL) and the standard deviation of the average run length (SDARL) is used as the performance metrics. Our results show that the estimation error results in the significant variation in the ARL distribution. Furthermore, in order to adequately reduce the variability, more phase I samples are required in terms of the SDARL metric than that in terms of the expected ARL metric. In addition, more observations on each sampled profile are suggested to improve the charts' performance, especially for small phase I sample sizes. Finally, an illustrative example is given to show the performance of the proposed zone control charts.  相似文献   

13.
Traditional control charts assume independence of observations obtained from the monitored process. However, if the observations are autocorrelated, these charts often do not perform as intended by the design requirements. Recently, several control charts have been proposed to deal with autocorrelated observations. The residual chart, modified Shewhart chart, EWMAST chart, and ARMA chart are such charts widely used for monitoring the occurrence of assignable causes in a process when the process exhibits inherent autocorrelation. Besides autocorrelation, one other issue is the unknown values of true process parameters to be used in the control chart design, which are often estimated from a reference sample of in-control observations. Performances of the above-mentioned control charts for autocorrelated processes are significantly affected by the sample size used in a Phase I study to estimate the control chart parameters. In this study, we investigate the effect of Phase I sample size on the run length performance of these four charts for monitoring the changes in the mean of an autocorrelated process, namely an AR(1) process. A discussion of the practical implications of the results and suggestions on the sample size requirements for effective process monitoring are provided.  相似文献   

14.
CUSUM control chart has been widely used for monitoring the process variance. It is usually used assuming that the nominal process variance is known. However, several researchers have shown that the ability of control charts to signal when a process is out of control is seriously affected unless process parameters are estimated from a large in-control Phase I data set. In this paper we derive the run length properties of a CUSUM chart for monitoring dispersion with estimated process variance and we evaluate the performance of this chart by comparing it with the same chart but with assumed known process parameters.  相似文献   

15.
ABSTRACT

This article develops an exponentially weighted moving average (EWMA) control chart using an auxiliary variable and repetitive sampling for efficient detection of small to moderate shifts in location. A EWMA statistic of a product estimator of the average (which utilities the information of auxiliary variables as well as repetitive sampling) is plotted on the proposed chart. The control chart coefficients of the proposed EWMA chart are determined for two strategic limits known as outer and inner control limits for the target in-control average run length. The performance of the proposed EWMA chart is studied using average run length when a shift occurs in the process average. The efficiency of the developed chart is compared with the competitive existing control charts. The results of the study revealed that proposed EWMA chart is more efficient than others to detect small changes in process mean.  相似文献   

16.
In this article we consider the modified Shewhart control chart for ARCH processes and introduce it for threshold ARCH (TARCH) ones. For both charts, we determine bounds for the distribution of the in-control run length (RL) and, consequently, for its average (ARL), both depending only on the distribution of the generating white noise, the model parameters and the critical value. For the ARCH model, we compare our bounds with others available in literature and show how they improve the existing ones. We present a simulation study to assess the quality of the bounds calculated for the ARL.  相似文献   

17.
Abstract

Profile monitoring is applied when the quality of a product or a process can be determined by the relationship between a response variable and one or more independent variables. In most Phase II monitoring approaches, it is assumed that the process parameters are known. However, it is obvious that this assumption is not valid in many real-world applications. In fact, the process parameters should be estimated based on the in-control Phase I samples. In this study, the effect of parameter estimation on the performance of four Phase II control charts for monitoring multivariate multiple linear profiles is evaluated. In addition, since the accuracy of the parameter estimation has a significant impact on the performance of Phase II control charts, a new cluster-based approach is developed to address this effect. Moreover, we evaluate and compare the performance of the proposed approach with a previous approach in terms of two metrics, average of average run length and its standard deviation, which are used for considering practitioner-to-practitioner variability. In this approach, it is not necessary to know the distribution of the chart statistic. Therefore, in addition to ease of use, the proposed approach can be applied to other type of profiles. The superior performance of the proposed method compared to the competing one is shown in terms of all metrics. Based on the results obtained, our method yields less bias with small-variance Phase I estimates compared to the competing approach.  相似文献   

18.
ABSTRACT

In the design of CUSUM control charts, it is common to use charts, tables, or software to find an appropriate critical threshold (h). This article provides an approximate formula to calculate the threshold directly from prespecified values of the reference value (k) and the in-control average run length (ARL0). Formulas are also provided for choosing k and h from prespecified values of the in-control and out-of-control average run lengths.  相似文献   

19.
ABSTRACT

Zero-inflated probability models are used to model count data that have an excessive number of zeros. Shewhart-type control charts have been proposed for the monitoring of zero-inflated processes. Usually their performance is evaluated under the assumption of known process parameters. However, in practice, their values are rarely known and they have to be estimated from an in-control historical Phase I sample. In the present paper, we investigate the performance of Shewhart-type control charts for zero-inflated processes with estimated parameters and propose practical guidelines for the statistical design of the examined charts, when the size of the preliminary sample is predetermined.  相似文献   

20.
This article studies a unique feature of the binomial CUSUM chart in which the difference (d t ?d 0) is replaced by (d t ?d 0)2 in the formulation of the cumulative sum C t (where d t and d 0 are the actual and in-control numbers of nonconforming units, respectively, in a sample). Performance studies are reported and the results reveal that this new feature is able to increase the detection effectiveness when fraction nonconforming p becomes three to four times as large as the in-control value p 0. The design of the new binomial CUSUM chart is presented along with the calculation of the in-control and out-of-control Average Run Lengths (ARL0 and ARL1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号