首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, Bayesian anomaly was reported for estimating reliability when subsystem failure data and system failure data were obtained from the same time period. As a result, a practical method for mitigating Bayesian anomaly was developed. In the first part of this paper, however, we show that the Bayesian anomaly can be avoided as long as the same failure information is incorporated in the model. In the second part of this paper, we consider a problem of estimating the Bayesian reliability when the failure count data on subsystems and systems are obtained from the same time period. We show that Bayesian anomaly does not exist when using the multinomial distribution with the Dirichlet prior distribution. A numerical example is given to compare the proposed method with the previous methods.  相似文献   

2.
We formulate closed-form Bayesian estimators for two complementary Poisson rate parameters using double sampling with data subject to misclassification and error free data. We also derive closed-form Bayesian estimators for two misclassification parameters in the modified Poisson model we assume. We use our results to determine credible sets for the rate and misclassification parameters. Additionally, we use MCMC methods to determine Bayesian estimators for three or more rate parameters and the misclassification parameters. We also perform a limited Monte Carlo simulation to examine the characteristics of these estimators. We demonstrate the efficacy of the new Bayesian estimators and highest posterior density regions with examples using two real data sets.  相似文献   

3.
Recent approaches to the statistical analysis of adverse event (AE) data in clinical trials have proposed the use of groupings of related AEs, such as by system organ class (SOC). These methods have opened up the possibility of scanning large numbers of AEs while controlling for multiple comparisons, making the comparative performance of the different methods in terms of AE detection and error rates of interest to investigators. We apply two Bayesian models and two procedures for controlling the false discovery rate (FDR), which use groupings of AEs, to real clinical trial safety data. We find that while the Bayesian models are appropriate for the full data set, the error controlling methods only give similar results to the Bayesian methods when low incidence AEs are removed. A simulation study is used to compare the relative performances of the methods. We investigate the differences between the methods over full trial data sets, and over data sets with low incidence AEs and SOCs removed. We find that while the removal of low incidence AEs increases the power of the error controlling procedures, the estimated power of the Bayesian methods remains relatively constant over all data sizes. Automatic removal of low-incidence AEs however does have an effect on the error rates of all the methods, and a clinically guided approach to their removal is needed. Overall we found that the Bayesian approaches are particularly useful for scanning the large amounts of AE data gathered.  相似文献   

4.
Prediction limits for Poisson distribution are useful in real life when predicting the occurrences of some phenomena, for example, the number of infections from a disease per year among school children, or the number of hospitalizations per year among patients with cardiovascular disease. In order to allocate the right resources and to estimate the associated cost, one would want to know the worst (i.e., an upper limit) and the best (i.e., the lower limit) scenarios. Under the Poisson distribution, we construct the optimal frequentist and Bayesian prediction limits, and assess frequentist properties of the Bayesian prediction limits. We show that Bayesian upper prediction limit derived from uniform prior distribution and Bayesian lower prediction limit derived from modified Jeffreys non informative prior coincide with their respective frequentist limits. This is not the case for the Bayesian lower prediction limit derived from a uniform prior and the Bayesian upper prediction limit derived from a modified Jeffreys prior distribution. Furthermore, it is shown that not all Bayesian prediction limits derived from a proper prior can be interpreted in a frequentist context. Using a counterexample, we state a sufficient condition and show that Bayesian prediction limits derived from proper priors satisfying our condition cannot be interpreted in a frequentist context. Analysis of simulated data and data on Atlantic tropical storm occurrences are presented.  相似文献   

5.
This paper deals with the problem of robustness of Bayesian regression with respect to the data. We first give a formal definition of Bayesian robustness to data contamination, prove that robustness according to the definition cannot be obtained by using heavy-tailed error distributions in linear regression models and propose a heteroscedastic approach to achieve the desired Bayesian robustness.  相似文献   

6.
The problem of modelling football data has become increasingly popular in the last few years and many different models have been proposed with the aim of estimating the characteristics that bring a team to lose or win a game, or to predict the score of a particular match. We propose a Bayesian hierarchical model to fulfil both these aims and test its predictive strength based on data about the Italian Serie A 1991–1992 championship. To overcome the issue of overshrinkage produced by the Bayesian hierarchical model, we specify a more complex mixture model that results in a better fit to the observed data. We test its performance using an example of the Italian Serie A 2007–2008 championship.  相似文献   

7.
Interval-censored data arise when a failure time say, T cannot be observed directly but can only be determined to lie in an interval obtained from a series of inspection times. The frequentist approach for analysing interval-censored data has been developed for some time now. It is very common due to unavailability of software in the field of biological, medical and reliability studies to simplify the interval censoring structure of the data into that of a more standard right censoring situation by imputing the midpoints of the censoring intervals. In this research paper, we apply the Bayesian approach by employing Lindley's 1980, and Tierney and Kadane 1986 numerical approximation procedures when the survival data under consideration are interval-censored. The Bayesian approach to interval-censored data has barely been discussed in literature. The essence of this study is to explore and promote the Bayesian methods when the survival data been analysed are is interval-censored. We have considered only a parametric approach by assuming that the survival data follow a loglogistic distribution model. We illustrate the proposed methods with two real data sets. A simulation study is also carried out to compare the performances of the methods.  相似文献   

8.
In this paper, we adopt the Bayesian approach to expectile regression employing a likelihood function that is based on an asymmetric normal distribution. We demonstrate that improper uniform priors for the unknown model parameters yield a proper joint posterior. Three simulated data sets were generated to evaluate the proposed method which show that Bayesian expectile regression performs well and has different characteristics comparing with Bayesian quantile regression. We also apply this approach into two real data analysis.  相似文献   

9.
Missing data, a common but challenging issue in most studies, may lead to biased and inefficient inferences if handled inappropriately. As a natural and powerful way for dealing with missing data, Bayesian approach has received much attention in the literature. This paper reviews the recent developments and applications of Bayesian methods for dealing with ignorable and non-ignorable missing data. We firstly introduce missing data mechanisms and Bayesian framework for dealing with missing data, and then introduce missing data models under ignorable and non-ignorable missing data circumstances based on the literature. After that, important issues of Bayesian inference, including prior construction, posterior computation, model comparison and sensitivity analysis, are discussed. Finally, several future issues that deserve further research are summarized and concluded.  相似文献   

10.
We present a case study based on a depression study that will illustrate the use of Bayesian statistics in the economic evaluation of cost‐effectiveness data, demonstrate the benefits of the Bayesian approach (whilst honestly recognizing any deficiencies) with respect to frequentist methods, and provide details of using the methods, including computer code where appropriate. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This article studies the construction of a Bayesian confidence interval for the ratio of marginal probabilities in matched-pair designs. Under a Dirichlet prior distribution, the exact posterior distribution of the ratio is derived. The tail confidence interval and the highest posterior density (HPD) interval are studied, and their frequentist performances are investigated by simulation in terms of mean coverage probability and mean expected length of the interval. An advantage of Bayesian confidence interval is that it is always well defined for any data structure and has shorter mean expected width. We also find that the Bayesian tail interval at Jeffreys prior performs as well as or better than the frequentist confidence intervals.  相似文献   

12.
This article is concerned with the study of intraclass correlations in the mixed linear model. A brief account of the shortcomings of the existing meth¬ods (frequentist. likelihood and Bayesian) is followed by alternative Bayesian parametrizations involving intraclass correlations and variance ratios. Our prior specifications accommodate a priori dependencies as well as situations which involve little or no prior information. We give examples of interval estimation and hypothesis testing using data from an animal breeding study.  相似文献   

13.
14.
The estimation of Bayesian networks given high‐dimensional data, in particular gene expression data, has been the focus of much recent research. Whilst there are several methods available for the estimation of such networks, these typically assume that the data consist of independent and identically distributed samples. It is often the case, however, that the available data have a more complex mean structure, plus additional components of variance, which must then be accounted for in the estimation of a Bayesian network. In this paper, score metrics that take account of such complexities are proposed for use in conjunction with score‐based methods for the estimation of Bayesian networks. We propose first, a fully Bayesian score metric, and second, a metric inspired by the notion of restricted maximum likelihood. We demonstrate the performance of these new metrics for the estimation of Bayesian networks using simulated data with known complex mean structures. We then present the analysis of expression levels of grape‐berry genes adjusting for exogenous variables believed to affect the expression levels of the genes. Demonstrable biological effects can be inferred from the estimated conditional independence relationships and correlations amongst the grape‐berry genes.  相似文献   

15.
We adopt a Bayesian approach to forecast the penetration of a new product into a market. We incorporate prior information from an existing product and/or management judgments into the data analysis. The penetration curve is assumed to be a nondecreasing function of time and may be under shape constraints. Markov-chain Monte Carlo methods are proposed and used to compute the Bayesian forecasts. An example on forecasting the penetration of color television using the information from black-and-white television is provided. The models considered can also be used to address the general bioassay and reliability stress-testing problems.  相似文献   

16.
Abstract

We develop a Bayesian statistical model for estimating bowhead whale population size from photo-identification data when most of the population is uncatchable. The proposed conditional likelihood function is a product of Darroch's model, formulated as a function of the number of good photos, and a binomial distribution of captured whales given the total number of good photos at each occasion. The full Bayesian model is implemented via adaptive rejection sampling for log concave densities. We apply the model to data from 1985 and 1986 bowhead whale photographic studies and the results compare favorably with the ones obtained in the literature. Also, a comparison with the maximum likelihood procedure with bootstrap simulation is considered using different vague priors for the capture probabilities.  相似文献   

17.
We develop Bayesian procedures to make inference about parameters of a statistical design with autocorrelated error terms. Modelling treatment effects can be complex in the presence of other factors such as time; for example in longitudinal data. In this paper, Markov chain Monte Carlo methods (MCMC), the Metropolis-Hastings algorithm and Gibbs sampler are used to facilitate the Bayesian analysis of real life data when the error structure can be expressed as an autoregressive model of order p. We illustrate our analysis with real data.  相似文献   

18.
19.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

20.
We develop a Bayesian estimation method to non-parametric mixed-effect models under shape-constrains. The approach uses a hierarchical Bayesian framework and characterizations of shape-constrained Bernstein polynomials (BPs). We employ Markov chain Monte Carlo methods for model fitting, using a truncated normal distribution as the prior for the coefficients of BPs to ensure the desired shape constraints. The small sample properties of the Bayesian shape-constrained estimators across a range of functions are provided via simulation studies. Two real data analysis are given to illustrate the application of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号