首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A control chart for monitoring process variation by using multiple dependent state (MDS) sampling is constructed in the present article. The operational formulas for in-control and out-of-control average run lengths (ARLs) are derived. Control constants are established by considering the target in-control ARL at a normal process. The extensive ARL tables are reported for various parameters and shifted values of process parameters. The performance of the proposed control chart has been evaluated with several existing charts in regard of ARLs, which empowered the presented chart and proved far better for timely detection of assignable causes. The application of the proposed concept is illustrated with a real-life industrial example and a simulation-based study to elaborate strength of the proposed chart over the existing concepts.  相似文献   

2.
In this paper, an attribute control chart under repetitive group sampling is designed for monitoring the production process where the lifetime of the product is considered as quality of the product. We assume that the lifetime follows the Pareto distribution of second kind with known shape parameter. The performance of the proposed chart is evaluated by average run length. The control limits coefficients as well as the repetitive group sampling parameter such as sample size are determined such that the in-control average run length is as close as to the specified average run length. Out-of-control average run length is also reported for different shift constants with corresponding optimal parameters. In addition, performance of proposed control chart is compared with the performance of existing chart. An economical designing of proposed control chart is also discussed.  相似文献   

3.
Control charts using repetitive group sampling have attracted a great deal of attention during the last few years. In the present article, we attempt to develop a control chart for the multivariate Poisson distribution using the repetitive group sampling scheme. In the proposed control chart, the monitoring statistic from the multivariate Poisson distribution has been used for the quick detection of the deteriorated process to avoid losses. The control coefficients have been estimated using the specified in-control average run lengths. The procedure of the proposed control chart has been explained by using the real-world example and a simulated data set. It has been observed that the proposed control chart is an efficient development for the quick detection of the nonrandom change in the manufacturing process.  相似文献   

4.
5.
Although the classical Shewhart np control chart has been widely used to detect an out-of-control status of manufacturing process, it is static and there is lack of responsiveness to slight process changes. In this paper, an adaptive np control chart with a joint sampling strategy combining double sampling (DS) and variable sampling interval (VSI) is developed. The multiple dependent state sampling scheme is adopted to further improve the performance of the control chart. An economical design model to minimize the general cost of using the proposed chart is established and solved by a genetic algorithm. The numerical results show that comparing to traditional static np control chart, the proposed np chart yields better performance in terms of shorter time to signal an out-of-control process and less expected cost per unit of time. Comparisons are made to show the capability of the proposed chart in yielding average reductions of 5.01% and 8.89%, in the cost of the proposed model compared to situations in which either the DSVSI np chart or the traditional np chart is used.  相似文献   

6.
The Weibull distribution is one of the most popular distributions for lifetime modeling. However, there has not been much research on control charts for a Weibull distribution. Shewhart control is known to be inefficient to detect a small shift in the process, while exponentially weighted moving average (EWMA) and cumulative sum control chart (CUSUM) charts have the ability to detect small changes in the process. To enhance the performance of a control chart for a Weibull distribution, we introduce a new control chart based on hybrid EWMA and CUSUM statistic, called the HEWMA-CUSUM chart. The performance of the proposed chart is compared with the existing chart in terms of the average run length (ARL). The proposed chart is found to be more sensitive than the existing chart in ARL. A simulation study is provided for illustration purposes. A real data is also applied to the proposed chart for practical use.  相似文献   

7.
Acceptance sampling, widely used in various production industries, is a very vital tool of quality control. In this paper, a new attribute acceptance-sampling plan is developed based on the exponentially weighted moving average statistic under a time-truncated life test when the product lifetime follows the Weibull distribution or the Burr type X distribution. The performance measures such as the probability of acceptance and the average sample number are derived. Tables are constructed for the selection of optimal parameters of the proposed sampling plan so as to minimize the average sample number satisfying the producer's and the consumer's risks. Illustrative example is also given for the application of the proposed plan. It is also shown that the proposed plan requires a smaller sample size compared to the single sampling plan.  相似文献   

8.
A new S2 control chart is presented for monitoring the process variance by utilizing a repetitive sampling scheme. The double control limits called inner and outer control limits are proposed, whose coefficients are determined by considering the average run length (ARL) and the average sample number when the process is in control. The proposed control chart is compared with the existing Shewhart S2 control chart in terms of the ARLs. The result shows that the proposed control chart is more efficient than the existing control chart in detecting the process shift.  相似文献   

9.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

10.
11.
A new control chart is proposed by using the belief statistic for the exponential distribution. The structure of the proposed control chart is given to measure the average run length for the shifted process. The comparison of the proposed chart is given with the existing charts in terms of the average run lengths, which shows the outperformance of the proposed chart. The performance of the proposed control chart is also discussed with the help of simulated data.  相似文献   

12.
Control charts have been popularly used as a user-friendly yet technically sophisticated tool to monitor whether a process is in statistical control or not. These charts are basically constructed under the normality assumption. But in many practical situations in real life this normality assumption may be violated. One such non-normal situation is to monitor the process variability from a skewed parent distribution where we propose the use of a Maxwell control chart. We introduce a pivotal quantity for the scale parameter of the Maxwell distribution which follows a gamma distribution. Probability limits and L-sigma limits are studied along with performance measure based on average run length and power curve. To avoid the complexity of future calculations for practitioners, factors for constructing control chart for monitoring the Maxwell parameter are given for different sample sizes and for different false alarm rate. We also provide simulated data to illustrate the Maxwell control chart. Finally, a real life example has been given to show the importance of such a control chart.  相似文献   

13.
14.
Average run lengths of the zone control chart are presented, The performance of this chart is compared with that of several Shewhart charts with and without runs rules, It is shown that the standard zone control chart has performance similar to some even simpler charts and a much higher false alarm rate than the Shewhart chart with all of the common runs rules. It is also shown that a slightly modified zone control chart outperforms the Shewhart chart with the common runs rules.  相似文献   

15.
Abstract

When the mixed chart proposed by Aslam et al. (2015 Aslam, M., M. Azam, N. Khan, and C.-H. Jun. 2015. A mixed control chart to monitor the process. International Journal of Production Research 53 (15):468493. doi:10.1080/00207543.2015.1031354.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) is in use, the sample items are classified as defective or not defective and, depending on the number of defectives, the quality characteristic X of the sample items are also measured. In this case, an Xbar chart decides the state of the process. The previous conforming/non-conforming classification truncates the X distribution and, because of that, the mathematical development to obtain the ARLs is complex. Aslam et al. (2015 Aslam, M., M. Azam, N. Khan, and C.-H. Jun. 2015. A mixed control chart to monitor the process. International Journal of Production Research 53 (15):468493. doi:10.1080/00207543.2015.1031354.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) didn’t pay attention to the fact that the X distribution is truncated and, due to that, they obtained incorrect ARLs.  相似文献   

16.
In this paper, a group acceptance sampling plan for a truncated life test is proposed when a multiple number of items as a group can be tested simultaneously in a tester, assuming that the lifetime of a product follows the Weibull distribution with a known shape parameter. The design parameters such as the number of groups and the acceptance number will be determined by satisfying the producer's and the consumer's risks at the specified quality levels, while the termination time and the number of testers are specified. The results are explained with tables and examples.  相似文献   

17.
This study extends the generally weighted moving average (GWMA) control chart by imitating the double exponentially weighted moving average (DEWMA) technique. The proposed chart is called the double generally weighted moving average (DGWMA) control chart. Simulation is employed to evaluate the average run length characteristics of the GWMA, DEWMA and DGWMA control charts. An extensive comparison of these control charts reveals that the DGWMA control chart with time-varying control limits is more sensitive than the GWMA and the DEWMA control charts for detecting medium shifts in the mean of a process when the shifts are between 0.5 and 1.5 standard deviations. Additionally, the GWMA control chart performs better when the mean shifts are below the 0.5 standard deviation, and the DEWMA control performs better when the mean shifts are above the 1.5 standard deviation. The design of the DGWMA control chart is also discussed.  相似文献   

18.
ABSTRACT

Quality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart.  相似文献   

19.
20.
In this article, we propose an exponentially weighted moving average (EWMA) control chart for the shape parameter β of Weibull processes. The chart is based on a moving range when a single measurement is taken per sampling period. We consider both one-sided (lower-sided and upper-sided) and two-sided control charts. We perform simulations to estimate control limits that achieve a specified average run length (ARL) when the process is in control. The control limits we derive are ARL unbiased in that they result in ARL that is shorter than the stable-process ARL when β has shifted. We also perform simulations to determine Phase I sample size requirements if control limits are based on an estimate of β. We compare the ARL performance of the proposed chart to that of the moving range chart proposed in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号