首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For constructing simultaneous confidence intervals for ratios of means for lognormal distributions, two approaches using a two-step method of variance estimates recovery are proposed. The first approach proposes fiducial generalized confidence intervals (FGCIs) in the first step followed by the method of variance estimates recovery (MOVER) in the second step (FGCIs–MOVER). The second approach uses MOVER in the first and second steps (MOVER–MOVER). Performance of proposed approaches is compared with simultaneous fiducial generalized confidence intervals (SFGCIs). Monte Carlo simulation is used to evaluate the performance of these approaches in terms of coverage probability, average interval width, and time consumption.  相似文献   

2.
This article examines confidence intervals for the single coefficient of variation and the difference of coefficients of variation in the two-parameter exponential distributions, using the method of variance of estimates recovery (MOVER), the generalized confidence interval (GCI), and the asymptotic confidence interval (ACI). In simulation, the results indicate that coverage probabilities of the GCI maintain the nominal level in general. The MOVER performs well in terms of coverage probability when data only consist of positive values, but it has wider expected length. The coverage probabilities of the ACI satisfy the target for large sample sizes. We also illustrate our confidence intervals using a real-world example in the area of medical science.  相似文献   

3.
The lognormal distribution is currently used extensively to describe the distribution of positive random variables. This is especially the case with data pertaining to occupational health and other biological data. One particular application of the data is statistical inference with regards to the mean of the data. Other authors, namely Zou et al. (2009), have proposed procedures involving the so-called “method of variance estimates recovery” (MOVER), while an alternative approach based on simulation is the so-called generalized confidence interval, discussed by Krishnamoorthy and Mathew (2003). In this paper we compare the performance of the MOVER-based confidence interval estimates and the generalized confidence interval procedure to coverage of credibility intervals obtained using Bayesian methodology using a variety of different prior distributions to estimate the appropriateness of each. An extensive simulation study is conducted to evaluate the coverage accuracy and interval width of the proposed methods. For the Bayesian approach both the equal-tail and highest posterior density (HPD) credibility intervals are presented. Various prior distributions (Independence Jeffreys' prior, Jeffreys'-Rule prior, namely, the square root of the determinant of the Fisher Information matrix, reference and probability-matching priors) are evaluated and compared to determine which give the best coverage with the most efficient interval width. The simulation studies show that the constructed Bayesian confidence intervals have satisfying coverage probabilities and in some cases outperform the MOVER and generalized confidence interval results. The Bayesian inference procedures (hypothesis tests and confidence intervals) are also extended to the difference between two lognormal means as well as to the case of zero-valued observations and confidence intervals for the lognormal variance. In the last section of this paper the bivariate lognormal distribution is discussed and Bayesian confidence intervals are obtained for the difference between two correlated lognormal means as well as for the ratio of lognormal variances, using nine different priors.  相似文献   

4.
It has been established that the bivariate log-normal distribution is appropriate for modelling certain paired observations. In this paper, we have developed large-sample confidence intervals of the dependence and reliability R=P(X>Y) parameters from a bivariate log-normal distribution with equal log-normal means. The parameter R provides a general measure of difference between the two populations and has applications in many areas. The performance of these confidence intervals has been examined by extensive simulation studies. The results are illustrated with an example dealing with a quantitative assay problem.  相似文献   

5.
Log-normal linear models are widely used in applications, and many times it is of interest to predict the response variable or to estimate the mean of the response variable at the original scale for a new set of covariate values. In this paper we consider the problem of efficient estimation of the conditional mean of the response variable at the original scale for log-normal linear models. Several existing estimators are reviewed first, including the maximum likelihood (ML) estimator, the restricted ML (REML) estimator, the uniformly minimum variance unbiased (UMVU) estimator, and a bias-corrected REML estimator. We then propose two estimators that minimize the asymptotic mean squared error and the asymptotic bias, respectively. A parametric bootstrap procedure is also described to obtain confidence intervals for the proposed estimators. Both the new estimators and the bootstrap procedure are very easy to implement. Comparisons of the estimators using simulation studies suggest that our estimators perform better than the existing ones, and the bootstrap procedure yields confidence intervals with good coverage properties. A real application of estimating the mean sediment discharge is used to illustrate the methodology.  相似文献   

6.
The multivariate log-normal distribution is a good candidate to describe data that are not only positive and skewed, but also contain many characteristic values. In this study, we apply the generalized variable method to compare the mean vectors of two independent multivariate log-normal populations that display heteroscedasticity. Two generalized pivotal quantities are derived for constructing the generalized confidence region and for testing the difference between two mean vectors. Simulation results indicate that the proposed procedures exhibit satisfactory performance regardless of the sample sizes and heteroscedasticity. The type I error rates obtained are consistent with expectations and the coverage probabilities are close to the nominal level when compared with the other method which is currently available. These features make the proposed method a worthy alternative for inferential analysis of problems involving multivariate log-normal means. The results are illustrated using three examples.  相似文献   

7.
This article considers inference on correlation coefficients of bivariate log-normal distributions. We developed generalized confidence intervals and hypothesis tests for the correlation coefficients, and extended the results to compare two independent correlations. Simulation studies show that the suggested methods work well. Two practical examples are used to illustrate the application of the proposed methods.  相似文献   

8.
The authors develop empirical likelihood (EL) based methods of inference for a common mean using data from several independent but nonhomogeneous populations. For point estimation, they propose a maximum empirical likelihood (MEL) estimator and show that it is n‐consistent and asymptotically optimal. For confidence intervals, they consider two EL based methods and show that both intervals have approximately correct coverage probabilities under large samples. Finite‐sample performances of the MEL estimator and the EL based confidence intervals are evaluated through a simulation study. The results indicate that overall the MEL estimator and the weighted EL confidence interval are superior alternatives to the existing methods.  相似文献   

9.
We propose a weighted empirical likelihood approach to inference with multiple samples, including stratified sampling, the estimation of a common mean using several independent and non-homogeneous samples and inference on a particular population using other related samples. The weighting scheme and the basic result are motivated and established under stratified sampling. We show that the proposed method can ideally be applied to the common mean problem and problems with related samples. The proposed weighted approach not only provides a unified framework for inference with multiple samples, including two-sample problems, but also facilitates asymptotic derivations and computational methods. A bootstrap procedure is also proposed in conjunction with the weighted approach to provide better coverage probabilities for the weighted empirical likelihood ratio confidence intervals. Simulation studies show that the weighted empirical likelihood confidence intervals perform better than existing ones.  相似文献   

10.
One of the indicators for evaluating the capability of a process is the process capability index. In this article, bootstrap confidence intervals of the generalized process capability index (GPCI) proposed by Maiti et al. are studied through simulation, when the underlying distributions are Lindley and Power Lindley distributions. The maximum likelihood method is used to estimate the parameters of the models. Three bootstrap confidence intervals namely, standard bootstrap (SB), percentile bootstrap (PB), and bias-corrected percentile bootstrap (BCPB) are considered for obtaining confidence intervals of GPCI. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average width of the bootstrap confidence intervals. Simulation results show that the estimated coverage probabilities of the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap confidence interval get closer to the nominal confidence level than those of the standard bootstrap confidence interval. Finally, three real datasets are analyzed for illustrative purposes.  相似文献   

11.
Abstract.  The paper develops empirical Bayes (EB) confidence intervals for population means with distributions belonging to the natural exponential family-quadratic variance function (NEF-QVF) family when the sample size for a particular population is moderate or large. The basis for such development is to find an interval centred around the posterior mean which meets the target coverage probability asymptotically, and then show that the difference between the coverage probabilities of the Bayes and EB intervals is negligible up to a certain order. The approach taken is Edgeworth expansion so that the sample sizes from the different populations need not be significantly large. The proposed intervals meet the target coverage probabilities asymptotically, and are easy to construct. We illustrate use of these intervals in the context of small area estimation both through real and simulated data. The proposed intervals are different from the bootstrap intervals. The latter can be applied quite generally, but the order of accuracy of these intervals in meeting the desired coverage probability is unknown.  相似文献   

12.
Among statistical inferences, one of the main interests is drawing the inferences about the log-normal means since the log-normal distribution is a well-known candidate model for analyzing positive and right-skewed data. In the past, the researchers only focused on one or two log-normal populations or used the large sample theory or quadratic procedure to deal with several log-normal distributions. In this article, we focus on making inferences on several log-normal means based on the modification of the quadratic method, in which the researchers often used the vector of the generalized variables to deal with the means of the symmetric distributions. Simulation studies show that the quadratic method performs well only for symmetric distributions. However, the modified procedure fits both symmetric and skew distribution. The numerical results show that the proposed modified procedure can provide the confidence interval with coverage probabilities close to the nominal level and the hypothesis testing performed with satisfactory results.  相似文献   

13.
In this paper, a new design-oriented two-stage two-sided simultaneous confidence intervals, for comparing several exponential populations with control population in terms of location parameters under heteroscedasticity, are proposed. If there is a prior information that the location parameter of k exponential populations are not less than the location parameter of control population, one-sided simultaneous confidence intervals provide more inferential sensitivity than two-sided simultaneous confidence intervals. But the two-sided simultaneous confidence intervals have advantages over the one-sided simultaneous confidence intervals as they provide both lower and upper bounds for the parameters of interest. The proposed design-oriented two-stage two-sided simultaneous confidence intervals provide the benefits of both the two-stage one-sided and two-sided simultaneous confidence intervals. When the additional sample at the second stage may not be available due to the experimental budget shortage or other factors in an experiment, one-stage two-sided confidence intervals are proposed, which combine the advantages of one-stage one-sided and two-sided simultaneous confidence intervals. The critical constants are obtained using the techniques given in Lam [9,10]. These critical constant are compared with the critical constants obtained by Bonferroni inequality techniques and found that critical constant obtained by Lam [9,10] are less conservative than critical constants computed from the Bonferroni inequality technique. Implementation of the proposed simultaneous confidence intervals is demonstrated by a numerical example.  相似文献   

14.
In this paper, we consider three distribution-free confidence intervals for quantiles given joint records from two independent sequences of continuous random variables with a common continuous distribution function. The coverage probabilities of these intervals are compared. We then compute the universal bounds of the expected widths of the proposed confidence intervals. These results naturally extend to any number of independent sequences instead of just two. Finally, the proposed confidence intervals are applied for a real data set to illustrate the practical usefulness of the procedures developed here.  相似文献   

15.
The hypothesis testing and interval estimation are considered for the common mean of several normal populations when the variances are unknown and possibly unequal. A new generalized pivotal is proposed based on the best linear unbiased estimator of the common mean and the generalized inference. An exact confidence interval for the common mean is also derived. The generalized confidence interval is illustrated with two numerical examples. The merits of the proposed method are numerically compared with those of the existing methods with respect to their expected lengths, coverage probabilities and powers under different scenarios.  相似文献   

16.
In this paper, the asymptotic distribution of the signal-to-noise ratio (SNR) is derived and a new confidence interval for the SNR is introduced. An evaluation of the performance of the new interval compared to Sharma and Krishna (S–K) (1994) confidence interval for the SNR using Monte Carlo simulations is conducted. Data were randomly generated from normal, log-normal, χ2, Gamma, and Weibull distributions. Simulations revealed that the performance of S–K interval is totally dependent on the amount of noise introduced and that it has a constant width for a given sample size. The S–K interval performs poorly in four of the distributions unless the SNR is around one. It is recommended against using the S–K interval for data from log-normal distribution even with SNR = 1. Unlike the S–K interval which does not account for skewness and kurtosis of the distribution, the new confidence interval for the SNR outperforms S–K for all five distributions discussed, especially when SNR?? 2. The proposed ranked set sampling (RSS) instead of simple random sampling (SRS) has improved the performance of both intervals as measured by coverage probability.  相似文献   

17.
Among k independent two-parameter exponential distributions which have the common scale parameter, the lower extreme population (LEP) is the one with the smallest location parameter and the upper extreme population (UEP) is the one with the largest location parameter. Given a multiply type II censored sample from each of these k independent two-parameter exponential distributions, 14 estimators for the unknown location parameters and the common unknown scale parameter are considered. Fourteen simultaneous confidence intervals (SCIs) for all distances from the extreme populations (UEP and LEP) and from the UEP from these k independent exponential distributions under the multiply type II censoring are proposed. The critical values are obtained by the Monte Carlo method. The optimal SCIs among 14 methods are identified based on the criteria of minimum confidence length for various censoring schemes. The subset selection procedures of extreme populations are also proposed and two numerical examples are given for illustration.  相似文献   

18.
The mixture of Type I and Type I1 censoring schemes, called the hybrid censoring, is quite important in life–testing experiments. Epstein(1954, 1960) introduced this testing scheme and proposed a two–sided confidence interval to estimate the mean lifetime, θ, when the underlying lifetime distribution is assumed to be exponential. There are some two–sided confidence intervals and credible intervals proposed by Fairbanks et al. (1982) and Draper and Guttman (1987) respectively. In this paper we obtain the exact two–sided confidence interval of θ following the approach of Chen and Bhattacharya (1988). We also obtain the asymptotic confidence intervals in the Hybrid censoring case. It is important to observe that the results for Type I and Type II censoring schemes can be obtained as particular cases of the Hybrid censoring scheme. We analyze one data set and compare different methods by Monte Carlo simulations.  相似文献   

19.
In this paper we consider the problem of constructing exact confidence intervals for the common mean of several normal populations with unknown and possibly unequal variances. Several procedures based on pivots and P-values are discussed and compared.  相似文献   

20.
Comparative lifetime experiments are of great importance when the interest is in ascertaining the relative merits of two competing products with regard to their reliability. In this article, we consider two exponential populations and when joint progressive Type-II censoring is implemented on the two samples. We then derive the moment generating functions and the exact distributions of the maximum likelihood estimators (MLEs) of the mean lifetimes of the two exponential populations under such a joint progressive Type-II censoring. We then discuss the exact lower confidence bounds, exact confidence intervals, and simultaneous confidence regions. Next, we discuss the corresponding approximate results based on the asymptotic normality of the MLEs as well as those based on the Bayesian method. All these confidence intervals and regions are then compared by means of Monte Carlo simulations with those obtained from bootstrap methods. Finally, an illustrative example is presented in order to illustrate all the methods of inference discussed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号