首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Continuous proportional outcomes are collected from many practical studies, where responses are confined within the unit interval (0,1). Utilizing Barndorff‐Nielsen and Jørgensen's simplex distribution, we propose a new type of generalized linear mixed‐effects model for longitudinal proportional data, where the expected value of proportion is directly modelled through a logit function of fixed and random effects. We establish statistical inference along the lines of Breslow and Clayton's penalized quasi‐likelihood (PQL) and restricted maximum likelihood (REML) in the proposed model. We derive the PQL/REML using the high‐order multivariate Laplace approximation, which gives satisfactory estimation of the model parameters. The proposed model and inference are illustrated by simulation studies and a data example. The simulation studies conclude that the fourth order approximate PQL/REML performs satisfactorily. The data example shows that Aitchison's technique of the normal linear mixed model for logit‐transformed proportional outcomes is not robust against outliers.  相似文献   

2.
In analysis of covariance with heteroscedastic slopes a picked-points analysis is often performed. Least-squares based picked-points analyses often lose efficiency (at times substantial) for nonnormal error distributions. Robust rank-based picked-points analyses are developed which are optimizable for heavy-tailed and/or skewed error distributions. The results of a Monte Carlo investigation of these analyses are presented. The situations include the normal model and models which violate it in one or several ways. Empirically the rank-based analyses appear to be valid over all these situations and more powerful than the least squares analysis for all the nonnormal models, while losing little efficiency at the normal model.  相似文献   

3.
It is common practice to compare the fit of non‐nested models using the Akaike (AIC) or Bayesian (BIC) information criteria. The basis of these criteria is the log‐likelihood evaluated at the maximum likelihood estimates of the unknown parameters. For the general linear model (and the linear mixed model, which is a special case), estimation is usually carried out using residual or restricted maximum likelihood (REML). However, for models with different fixed effects, the residual likelihoods are not comparable and hence information criteria based on the residual likelihood cannot be used. For model selection, it is often suggested that the models are refitted using maximum likelihood to enable the criteria to be used. The first aim of this paper is to highlight that both the AIC and BIC can be used for the general linear model by using the full log‐likelihood evaluated at the REML estimates. The second aim is to provide a derivation of the criteria under REML estimation. This aim is achieved by noting that the full likelihood can be decomposed into a marginal (residual) and conditional likelihood and this decomposition then incorporates aspects of both the fixed effects and variance parameters. Using this decomposition, the appropriate information criteria for model selection of models which differ in their fixed effects specification can be derived. An example is presented to illustrate the results and code is available for analyses using the ASReml‐R package.  相似文献   

4.
Quantitative traits measured over pedigrees of individuals may be analysed using maximum likelihood estimation, assuming that the trait has a multivariate normal distribution. This approach is often used in the analysis of mixed linear models. In this paper a robust version of the log likelihood for multivariate normal data is used to construct M-estimators which are resistant to contamination by outliers. The robust estimators are found using a minimisation routine which retains the flexible parameterisations of the multivariate normal approach. Asymptotic properties of the estimators are derived, computation of the estimates and their use in outlier detection tests are discussed, and a small simulation study is conducted.  相似文献   

5.
A simulation study of the binomial-logit model with correlated random effects is carried out based on the generalized linear mixed model (GLMM) methodology. Simulated data with various numbers of regression parameters and different values of the variance component are considered. The performance of approximate maximum likelihood (ML) and residual maximum likelihood (REML) estimators is evaluated. For a range of true parameter values, we report the average biases of estimators, the standard error of the average bias and the standard error of estimates over the simulations. In general, in terms of bias, the two methods do not show significant differences in estimating regression parameters. The REML estimation method is slightly better in reducing the bias of variance component estimates.  相似文献   

6.
Linear mixed models are regularly applied to animal and plant breeding data to evaluate genetic potential. Residual maximum likelihood (REML) is the preferred method for estimating variance parameters associated with this type of model. Typically an iterative algorithm is required for the estimation of variance parameters. Two algorithms which can be used for this purpose are the expectation‐maximisation (EM) algorithm and the parameter expanded EM (PX‐EM) algorithm. Both, particularly the EM algorithm, can be slow to converge when compared to a Newton‐Raphson type scheme such as the average information (AI) algorithm. The EM and PX‐EM algorithms require specification of the complete data, including the incomplete and missing data. We consider a new incomplete data specification based on a conditional derivation of REML. We illustrate the use of the resulting new algorithm through two examples: a sire model for lamb weight data and a balanced incomplete block soybean variety trial. In the cases where the AI algorithm failed, a REML PX‐EM based on the new incomplete data specification converged in 28% to 30% fewer iterations than the alternative REML PX‐EM specification. For the soybean example a REML EM algorithm using the new specification converged in fewer iterations than the current standard specification of a REML PX‐EM algorithm. The new specification integrates linear mixed models, Henderson's mixed model equations, REML and the REML EM algorithm into a cohesive framework.  相似文献   

7.
We present a maximum likelihood estimation procedure for the multivariate frailty model. The estimation is based on a Monte Carlo EM algorithm. The expectation step is approximated by averaging over random samples drawn from the posterior distribution of the frailties using rejection sampling. The maximization step reduces to a standard partial likelihood maximization. We also propose a simple rule based on the relative change in the parameter estimates to decide on sample size in each iteration and a stopping time for the algorithm. An important new concept is acquiring absolute convergence of the algorithm through sample size determination and an efficient sampling technique. The method is illustrated using a rat carcinogenesis dataset and data on vase lifetimes of cut roses. The estimation results are compared with approximate inference based on penalized partial likelihood using these two examples. Unlike the penalized partial likelihood estimation, the proposed full maximum likelihood estimation method accounts for all the uncertainty while estimating standard errors for the parameters.  相似文献   

8.
Different longitudinal study designs require different statistical analysis methods and different methods of sample size determination. Statistical power analysis is a flexible approach to sample size determination for longitudinal studies. However, different power analyses are required for different statistical tests which arises from the difference between different statistical methods. In this paper, the simulation-based power calculations of F-tests with Containment, Kenward-Roger or Satterthwaite approximation of degrees of freedom are examined for sample size determination in the context of a special case of linear mixed models (LMMs), which is frequently used in the analysis of longitudinal data. Essentially, the roles of some factors, such as variance–covariance structure of random effects [unstructured UN or factor analytic FA0], autocorrelation structure among errors over time [independent IND, first-order autoregressive AR1 or first-order moving average MA1], parameter estimation methods [maximum likelihood ML and restricted maximum likelihood REML] and iterative algorithms [ridge-stabilized Newton-Raphson and Quasi-Newton] on statistical power of approximate F-tests in the LMM are examined together, which has not been considered previously. The greatest factor affecting statistical power is found to be the variance–covariance structure of random effects in the LMM. It appears that the simulation-based analysis in this study gives an interesting insight into statistical power of approximate F-tests for fixed effects in LMMs for longitudinal data.  相似文献   

9.
The authors explore likelihood‐based methods for making inferences about the components of variance in a general normal mixed linear model. In particular, they use local asymptotic approximations to construct confidence intervals for the components of variance when the components are close to the boundary of the parameter space. In the process, they explore the question of how to profile the restricted likelihood (REML). Also, they show that general REML estimates are less likely to fall on the boundary of the parameter space than maximum‐likelihood estimates and that the likelihood‐ratio test based on the local asymptotic approximation has higher power than the likelihood‐ratio test based on the usual chi‐squared approximation. They examine the finite‐sample properties of the proposed intervals by means of a simulation study.  相似文献   

10.
The Best Linear Unbiased Predictor (BLUP) in mixed models is a function of the variance components and they are estimated using maximum likelihood (ML) or restricted ML methods. Nonconvergence of BLUP would occur due to a drawback of the standard likelihood-based approaches. In such situations, ML and REML either do not provide any BLUPs or all become equal. To overcome this drawback, we provide a generalized estimate (GE) of BLUP that does not suffer from the problem of negative or zero variance components, and compare its performance against the ML and REML estimates of BLUP. Simulated and published data are used to compare BLUP.  相似文献   

11.
In this paper we discuss estimation and diagnostic procedures in elliptical multivariate regression models with equicorrelated random errors. Two procedures are proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to assess the sensitivity of the maximum likelihood estimates (MLEs). Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering appropriate elliptical distributions. The local influence approach is used to compare the sensitivity of the model estimates.  相似文献   

12.
In split-plot experiments, estimation of unknown parameters by generalized least squares (GLS), as opposed to ordinary least squares (OLS), is required, owing to the existence of whole- and subplot errors. However, estimating the error variances is often necessary for GLS. Restricted maximum likelihood (REML) is an established method for estimating the error variances, and its benefits have been highlighted in many previous studies. This article proposes a new two-step residual-based approach for estimating error variances. Results of numerical simulations indicate that the proposed method performs sufficiently well to be considered as a suitable alternative to REML.  相似文献   

13.
Asymptotics for REML estimation of spatial covariance parameters   总被引:2,自引:0,他引:2  
In agricultural field trials, restricted maximum likelihood estimation (REML) of the spatial covariance parameters is often preferred to maximum likelihood. Although it has either been conjectured or assumed that REML estimators are asymptotically Gaussian, conditions under which such asymptotic results hold are clearly needed. This article gives checkable conditions for spatial regression when sampling locations are either on a rectangular grid or are irregularly spaced but satisfy certain growth conditions.  相似文献   

14.
Elimination of a nuisance variable is often non‐trivial and may involve the evaluation of an intractable integral. One approach to evaluate these integrals is to use the Laplace approximation. This paper concentrates on a new approximation, called the partial Laplace approximation, that is useful when the integrand can be partitioned into two multiplicative disjoint functions. The technique is applied to the linear mixed model and shows that the approximate likelihood obtained can be partitioned to provide a conditional likelihood for the location parameters and a marginal likelihood for the scale parameters equivalent to restricted maximum likelihood (REML). Similarly, the partial Laplace approximation is applied to the t‐distribution to obtain an approximate REML for the scale parameter. A simulation study reveals that, in comparison to maximum likelihood, the scale parameter estimates of the t‐distribution obtained from the approximate REML show reduced bias.  相似文献   

15.
This article introduces a new asymmetric distribution constructed by assuming the multivariate normal mean-variance mixture model. Called normal mean-variance mixture of the Lindley distribution, we derive some mathematical properties of the new distribution. Also, a feasible maximum likelihood estimation procedure using the EM algorithm and the asymptotic standard errors of parameter estimates are developed. The performance of the proposed distribution is illustrated by means of real datasets and simulation analysis.  相似文献   

16.
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modified maximum likelihood estimation method that provides the estimator, called modified maximum likelihood estimator (MMLE), in closed form. These estimators are shown to be unbiased, efficient, and robust as compared to the widely used least square estimators (LSEs). Also, the tests based upon MMLEs are found to be more powerful than the similar tests based upon LSEs.  相似文献   

17.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

18.
Necessary and sufficient conditions for the existence of maximum likelihood estimators of unknown parameters in linear models with equi‐correlated random errors are presented. The basic technique we use is that these models are, first, orthogonally transformed into linear models with two variances, and then the maximum likelihood estimation problem is solved in the environment of transformed models. Our results generalize a result of Arnold, S. F. (1981) [The theory of linear models and multivariate analysis. Wiley, New York]. In addition, we give necessary and sufficient conditions for the existence of restricted maximum likelihood estimators of the parameters. The results of Birkes, D. & Wulff, S. (2003) [Existence of maximum likelihood estimates in normal variance‐components models. J Statist Plann. Inference. 113 , 35–47] are compared with our results and differences are pointed out.  相似文献   

19.
We extend the family of multivariate generalized linear mixed models to include random effects that are generated by smooth densities. We consider two such families of densities, the so-called semi-nonparametric (SNP) and smooth nonparametric (SMNP) densities. Maximum likelihood estimation, under either the SNP or the SMNP densities, is carried out using a Monte Carlo EM algorithm. This algorithm uses rejection sampling and automatically increases the MC sample size as it approaches convergence. In a simulation study we investigate the performance of these two densities in capturing the true underlying shape of the random effects distribution. We also examine the implications of misspecification of the random effects distribution on the estimation of the fixed effects and their standard errors. The impact of the assumed random effects density on the estimation of the random effects themselves is investigated in a simulation study and also in an application to a real data set.  相似文献   

20.
There are various methods to estimate the parameters in the binormal model for the ROC curve. In this paper, we propose a conceptually simple and computationally feasible Bayesian estimation method using a rank-based likelihood. Posterior consistency is also established. We compare the new method with other estimation methods and conclude that our estimator generally performs better than its competitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号