首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Given that two circles overlap, the area in common is a function of the distance between their centres. This paper adopts a suitable random distribution for the intercentre distance and then derives the distribution of the area of overlap. An approximation is sought for the density function using a criterion which enables bounds to be placed on the difference between the moments of the density function and those of the approximation. This is an approach of general applicability. The importance of matching the end-point behaviour of the density and the approximation is stressed. It is shown that the distribution of the area of overlap may be well approximated by a mixture of beta distributions in which the parameters change smoothly with the ratio of radii.  相似文献   

2.
We consider the approximation of mixed Poisson distributions by Poisson laws and also by related finite signed measures of higher order. Upper bounds and asymptotic relations are given for several distances. Even in the case of the Poisson approximation with respect to the total variation distance, our bounds have better order than those given in the literature. In particular, our results hold under weaker moment conditions for the mixing random variable. As an example, we consider the approximation of the negative binomial distribution, which enables us to prove the sharpness of a constant in the upper bound of the total variation distance. The main tool is an integral formula for the difference of the counting densities of a Poisson distribution and a related finite signed measure.  相似文献   

3.
This paper primarily is concerned with the sampling of the Fisher–Bingham distribution and we describe a slice sampling algorithm for doing this. A by-product of this task gave us an infinite mixture representation of the Fisher–Bingham distribution; the mixing distributions being based on the Dirichlet distribution. Finite numerical approximations are considered and a sampling algorithm based on a finite mixture approximation is compared with the slice sampling algorithm.  相似文献   

4.
Asymptotic Normality in Mixtures of Power Series Distributions   总被引:1,自引:0,他引:1  
Abstract.  The problem of estimating the individual probabilities of a discrete distribution is considered. The true distribution of the independent observations is a mixture of a family of power series distributions. First, we ensure identifiability of the mixing distribution assuming mild conditions. Next, the mixing distribution is estimated by non-parametric maximum likelihood and an estimator for individual probabilities is obtained from the corresponding marginal mixture density. We establish asymptotic normality for the estimator of individual probabilities by showing that, under certain conditions, the difference between this estimator and the empirical proportions is asymptotically negligible. Our framework includes Poisson, negative binomial and logarithmic series as well as binomial mixture models. Simulations highlight the benefit in achieving normality when using the proposed marginal mixture density approach instead of the empirical one, especially for small sample sizes and/or when interest is in the tail areas. A real data example is given to illustrate the use of the methodology.  相似文献   

5.
We will pursue a Bayesian nonparametric approach in the hierarchical mixture modelling of lifetime data in two situations: density estimation, when the distribution is a mixture of parametric densities with a nonparametric mixing measure, and accelerated failure time (AFT) regression modelling, when the same type of mixture is used for the distribution of the error term. The Dirichlet process is a popular choice for the mixing measure, yielding a Dirichlet process mixture model for the error; as an alternative, we also allow the mixing measure to be equal to a normalized inverse-Gaussian prior, built from normalized inverse-Gaussian finite dimensional distributions, as recently proposed in the literature. Markov chain Monte Carlo techniques will be used to estimate the predictive distribution of the survival time, along with the posterior distribution of the regression parameters. A comparison between the two models will be carried out on the grounds of their predictive power and their ability to identify the number of components in a given mixture density.  相似文献   

6.
An approximation for the distributions of m-dimensional random variables with absolutely continuous cumulative distribution functions and bounded supports is presented. In addition, two easily computed bounds for the error in using the approximation rather than the actual distribution are provided for any measurable region.  相似文献   

7.
Parametric mixture models are commonly used in the analysis of clustered data. Parametric families are specified for the conditional distribution of the response variable given a cluster-specific effect, and for the marginal distribution of the cluster-specific effects. This latter distribution is referred to as the mixing distribution. If the form of the mixing distribution is misspecified, then Bayesian and maximum-likelihood estimators of parameters associated with either distribution may be inconsistent. The magnitude of the asymptotic bias is investigated, using an approximation based on infinitesimal contamination of the mixing distribution. The approximation is useful when there is a closed-form expression for the marginal distribution of the response under the assumed mixing distribution, but not under the true mixing distribution. Typically this occurs when the assumed mixing distribution is conjugate, meaning that the conditional distribution of the cluster-specific parameter given the response variable belongs to the same parametric family as the mixing distribution.  相似文献   

8.
The purpose of the paper is to estimate the parameters of the two-component mixture of Weibull distribution under doubly censored samples using Bayesian approach. The choice of Weibull distribution is made due to its (i) capability to model failure time data from engineering, medical and biological sciences (ii) added advantages over the well-known lifetime distributions such as exponential, Raleigh, lognormal and gamma distribution in terms of flexibility, increasing and decreasing hazard rate and closed-form distribution function and hazard rate. The proposed two-component mixture of Weibull distribution is even more flexible than its conventional form. However, the estimation of the parameters from the proposed mixture is more complex. Further, we have assumed couple of loss functions under non informative prior for the Bayesian analysis of the parameters from the mixture model. As the resultant Bayes estimators and associated posterior risks cannot be derived in the closed form, we have used the importance sampling and Lindley’s approximation to obtain the approximate estimates for the parameters of the mixture model. The comparison between the performances of approximation techniques has been made on the basis of simulation study and real-life data analysis. The importance sampling is found to be better than Lindley’s approximation as it gives better estimation for shape and mixing parameters of the mixture model and computations under this technique are much easier/shorter than those under Lindley’s approximation.  相似文献   

9.
For the data from multivariate t distributions, it is very hard to make an influence analysis based on the probability density function since its expression is intractable. In this paper, we present a technique for influence analysis based on the mixture distribution and EM algorithm. In fact, the multivariate t distribution can be considered as a particular Gaussian mixture by introducing the weights from the Gamma distribution. We treat the weights as the missing data and develop the influence analysis for the data from multivariate t distributions based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. Several case-deletion measures are proposed for detecting influential observations from multivariate t distributions. Two numerical examples are given to illustrate our methodology.  相似文献   

10.
In many settings it is useful to have bounds on the total variation distance between some random variable Z and its shifted version Z+1. For example, such quantities are often needed when applying Stein's method for probability approximation. This note considers one way in which such bounds can be derived, in cases where Z is either the equilibrium distribution of some birth-death process or the mixture of such a distribution. Applications of these bounds are given to translated Poisson and compound Poisson approximations for Poisson mixtures and the Pólya distribution.  相似文献   

11.
A necessary and sufficient condition that a continuous, positive random variable follow a gamma distribution is given in terms of any one of its conditional finite moments and an expression involving its failure rate. The results are then used to develop a characterization for a mixture of two gamma distributions. The general results about characterization of a mixture of gamma distributions yield several special cases that have appeared separately in recent literature, including characterization of a single exponential distribution, characterization of a single gamma distribution (in terms of either first or second moments) and a sufficient condition for a mixture of two exponential distributions (in terms of first moments). The condition in this last result is shown to be necessary also. Numerous other cases are possible, using different choices for distribution parameters along with a selection of the mixing parameter, for either individual or mixtures of distributions. Various characterizations can be expressed using higher order moments, too.  相似文献   

12.
Many probability distributions can be represented as compound distributions. Consider some parameter vector as random. The compound distribution is the expected distribution of the variable of interest given the random parameters. Our idea is to define a partition of the domain of definition of the random parameters, so that we can represent the expected density of the variable of interest as a finite mixture of conditional densities. We then model the mixture probabilities of the conditional densities using information on population categories, thus modifying the original overall model. We thus obtain specific models for sub-populations that stem from the overall model. The distribution of a sub-population of interest is thus completely specified in terms of mixing probabilities. All characteristics of interest can be derived from this distribution and the comparison between sub-populations easily proceeds from the comparison of the mixing probabilities. A real example based on EU-SILC data is given. Then the methodology is investigated through simulation.  相似文献   

13.
We study the properties of truncated gamma distributions and we derive simulation algorithms which dominate the standard algorithms for these distributions. For the right truncated gamma distribution, an optimal accept–reject algorithm is based on the fact that its density can be expressed as an infinite mixture of beta distribution. For integer values of the parameters, the density of the left truncated distributions can be rewritten as a mixture which can be easily generated. We give an optimal accept–reject algorithm for the other values of the parameter. We compare the efficiency of our algorithm with the previous method and show the improvement in terms of minimum acceptance probability. The algorithm proposed here has an acceptance probability which is superior to e/4.  相似文献   

14.
SCALE MIXTURES DISTRIBUTIONS IN STATISTICAL MODELLING   总被引:1,自引:0,他引:1  
This paper presents two types of symmetric scale mixture probability distributions which include the normal, Student t, Pearson Type VII, variance gamma, exponential power, uniform power and generalized t (GT) distributions. Expressing a symmetric distribution into a scale mixture form enables efficient Bayesian Markov chain Monte Carlo (MCMC) algorithms in the implementation of complicated statistical models. Moreover, the mixing parameters, a by-product of the scale mixture representation, can be used to identify possible outliers. This paper also proposes a uniform scale mixture representation for the GT density, and demonstrates how this density representation alleviates the computational burden of the Gibbs sampler.  相似文献   

15.
This article investigates properties of mixture model of proportional reversed hazard rate. Firstly, the mixing random variable and the overall population variable are proved to be positively likelihood dependent. Secondly, lower bounds for the distribution function as well as the conditional distribution are established in the case that the mixing variable belongs to certain nonparametric classes. Finally, some stochastic orders on the mixing (baseline) variables are proved to be translated to the corresponding overall population variables.  相似文献   

16.
A Bayesian test for the point null testing problem in the multivariate case is developed. A procedure to get the mixed distribution using the prior density is suggested. For comparisons between the Bayesian and classical approaches, lower bounds on posterior probabilities of the null hypothesis, over some reasonable classes of prior distributions, are computed and compared with the p-value of the classical test. With our procedure, a better approximation is obtained because the p-value is in the range of the Bayesian measures of evidence.  相似文献   

17.
Sequences of independent random variables are observed and on the basis of these observations future values of the process are forecast. The Bayesian predictive density of k future observations for normal, exponential, and binomial sequences which change exactly once are analyzed for several cases. It is seen that the Bayesian predictive densities are mixtures of standard probability distributions. For example, with normal sequences the Bayesian predictive density is a mixture of either normal or t-distributions, depending on whether or not the common variance is known. The mixing probabilities are the same as those occurring in the corresponding posterior distribution of the mean(s) of the sequence. The predictive mass function of the number of future successes that will occur in a changing Bernoulli sequence is computed and point and interval predictors are illustrated.  相似文献   

18.
Further properties of the nonparametric maximum-likelihood estimator of a mixing distribution are obtained by exploiting the properties of totally positive kernels. Sufficient conditions for uniqueness of the estimator are given. This result is more general, and the proof is substantially simpler, than given previously. When the component density has support on N points, it is shown that all identifiable mixing distributions have support on no more than N/2 points. Identifiable mixtures are shown to lie on the boundary of the mixture model space. The maximum-likelihood estimate is shown to be unique if the vector of observations lies outside this space.  相似文献   

19.
The distribution of the estimated mean of the nonstandard mixture of distributions that has a discrete probability mass at zero and a gamma distribution for positive values is derived. Furthermore, for the studied nonstandard mixture of distributions, the distribution of the standardized statistic (estimator - true mean)/standard deviation of estimator is derived. The results are used to study the accuracy of the confidence interval for the mean based on a large sample approximation. Quantiles for the standardized statistic are also calculated.  相似文献   

20.
Motivated by examples in protein bioinformatics, we study a mixture model of multivariate angular distributions. The distribution treated here (multivariate sine distribution) is a multivariate extension of the well-known von Mises distribution on the circle. The density of the sine distribution has an intractable normalizing constant and here we propose to replace it in the concentrated case by a simple approximation. We study the EM algorithm for this distribution and apply it to a practical example from protein bioinformatics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号