首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Random effects models have been playing a critical role for modelling longitudinal data. However, there are little studies on the kernel-based maximum likelihood method for semiparametric random effects models. In this paper, based on kernel and likelihood methods, we propose a pooled global maximum likelihood method for the partial linear random effects models. The pooled global maximum likelihood method employs the local approximations of the nonparametric function at a group of grid points simultaneously, instead of one point. Gaussian quadrature is used to approximate the integration of likelihood with respect to random effects. The asymptotic properties of the proposed estimators are rigorously studied. Simulation studies are conducted to demonstrate the performance of the proposed approach. We also apply the proposed method to analyse correlated medical costs in the Medical Expenditure Panel Survey data set.  相似文献   

2.
In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single‐index models for longitudinal data that may be unbalanced. In particular, a new three‐stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resulting estimators properly account for the within‐subject correlation. We show that the parameter estimators are asymptotically semiparametrically efficient. We also show that the asymptotic variance of the link function estimator is minimized when the working error covariance matrices are correctly specified. The new estimators are more efficient than estimators in the existing literature. These asymptotic results are obtained without assuming normality. The finite‐sample performance of the proposed method is demonstrated by simulation studies. In addition, two real‐data examples are analyzed to illustrate the methodology.  相似文献   

3.
We extend nonparametric regression models with local linear least squares fitting using kernel weights to the case of linear and circular predictors. We derive the asymptotic properties of the conditional bias and variance of bivariate local linear least squares kernel estimators. A small simulation study and a real experiment are given.  相似文献   

4.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

5.
Robust nonparametric estimators for additive regression or autoregression models under an α-mixing condition are proposed. They are based on local M-estimators or local medians with kernel weights, and their asymptotic behaviour is studied. Moreover, diese local M-estimators achieve the same univariate rate of convergence as their linear relatives.  相似文献   

6.
We consider the nonparametric estimation of the regression functions for dependent data. Suppose that the covariates are observed with additive errors in the data and we employ nonparametric deconvolution kernel techniques to estimate the regression functions in this paper. We investigate how the strength of time dependence affects the asymptotic properties of the local constant and linear estimators. We treat both short-range dependent and long-range dependent linear processes in a unified way and demonstrate that the long-range dependence (LRD) of the covariates affects the asymptotic properties of the nonparametric estimators as well as the LRD of regression errors does.  相似文献   

7.
Abstract

We consider statistical inference for additive partial linear models when the linear covariate is measured with error. A bias-corrected spline-backfitted kernel smoothing method is proposed. Under mild assumptions, the proposed component function and parameter estimator are oracally efficient and fast to compute. The nonparametric function estimator’s pointwise distribution is asymptotically equivalent to an function estimator in partial linear model. Finite-sample performance of the proposed estimators is assessed by simulation experiments. The proposed methods are applied to Boston house data set.  相似文献   

8.
This paper studies robust estimation of multivariate regression model using kernel weighted local linear regression. A robust estimation procedure is proposed for estimating the regression function and its partial derivatives. The proposed estimators are jointly asymptotically normal and attain nonparametric optimal convergence rate. One-step approximations to the robust estimators are introduced to reduce computational burden. The one-step local M-estimators are shown to achieve the same efficiency as the fully iterative local M-estimators as long as the initial estimators are good enough. The proposed estimators inherit the excellent edge-effect behavior of the local polynomial methods in the univariate case and at the same time overcome the disadvantages of the local least-squares based smoothers. Simulations are conducted to demonstrate the performance of the proposed estimators. Real data sets are analyzed to illustrate the practical utility of the proposed methodology. This work was supported by the National Natural Science Foundation of China (Grant No. 10471006).  相似文献   

9.
For nonparametric regression models with fixed and random design, two classes of estimators for the error variance have been introduced: second sample moments based on residuals from a nonparametric fit, and difference-based estimators. The former are asymptotically optimal but require estimating the regression function; the latter are simple but have larger asymptotic variance. For nonparametric regression models with random covariates, we introduce a class of estimators for the error variance that are related to difference-based estimators: covariate-matched U-statistics. We give conditions on the random weights involved that lead to asymptotically optimal estimators of the error variance. Our explicit construction of the weights uses a kernel estimator for the covariate density.  相似文献   

10.
In this paper, we present large sample properties of a partially linear model from the Bayesian perspective, in which responses are explained by the semiparametric regression model with the additive form of the linear component and the nonparametric component. For this purpose, we investigate asymptotic behaviors of posterior distributions in terms of consistency. Specifically, we deal with a specific Bayesian partially linear regression model with additive noises in which the nonparametric component is modeled using Gaussian process priors. Under the Bayesian partially linear model using Gaussian process priors, we focus on consistency of posterior distribution and consistency of the Bayes factor, and extend these results to generalized additive regression models and study their asymptotic properties. In addition we illustrate the asymptotic properties based on empirical analysis through simulation studies.  相似文献   

11.
A test statistic proposed by Li (1999) for testing the adequacy of heteroscedastic nonlinear regression models using nonparametric kernel smoothers is applied to testing for linearity in generalized linear models. Simulation results for models with centered gamma and inverse Gaussian errors are presented to illustrate the performance of the resulting test compared with log-likelihood ratio tests for specific parametric alternatives. The test is applied to a data set of coronary heart disease status (Hosmer and Lemeshow, (1990).  相似文献   

12.
In this paper we study a class of multivariate partially linear regression models. Various estimators for the parametric component and the nonparametric component are constructed and their asymptotic normality established. In particular, we propose an estimator of the contemporaneous correlation among the multiple responses and develop a test for detecting the existence of such contemporaneous correlation without using any nonparametric estimation. The performance of the proposed estimators and test is evaluated through some simulation studies and an analysis of a real data set is used to illustrate the developed methodology. The Canadian Journal of Statistics 41: 1–22; 2013 © 2013 Statistical Society of Canada  相似文献   

13.
We explore a class of vector smoothers based on local polynomial regression for fitting nonparametric regression models which have a vector response. The asymptotic bias and variance for the class of estimators are derived for two different ways of representing the variance matrices within both a seemingly unrelated regression and a vector measurement error framework. We show that the asymptotic behaviour of the estimators is different in these four cases. In addition, the placement of the kernel weights in weighted least squares estimators is very important in the seeming unrelated regressions problem (to ensure that the estimator is asymptotically unbiased) but not in the vector measurement error model. It is shown that the component estimators are asymptotically uncorrelated in the seemingly unrelated regressions model but asymptotically correlated in the vector measurement error model. These new and interesting results extend our understanding of the problem of smoothing dependent data.  相似文献   

14.
This paper proposes nonparametric estimation methods for functional linear semiparametric quantile regression, where the conditional quantile of the scalar responses is modelled by both scalar and functional covariates and an additional unknown nonparametric function term. The slope function is estimated using the functional principal component basis and the nonparametric function is approximated by a piecewise polynomial function. The asymptotic distribution of the estimators of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. The asymptotic distribution of the estimator of the unknown nonparametric function is also established. Simulation studies are conducted to investigate the finite-sample performance of the proposed estimators. The proposed methodology is demonstrated by analysing a real data from ADHD-200 sample.  相似文献   

15.
In this article, we propose a class of partial deconvolution kernel estimators for the nonparametric regression function when some covariates are measured with error and some are not. The estimation procedure combines the classical kernel methodology and the deconvolution kernel technique. According to whether the measurement error is ordinarily smooth or supersmooth, we establish the optimal local and global convergence rates for these proposed estimators, and the optimal bandwidths are also identified. Furthermore, lower bounds for the convergence rates of all possible estimators for the nonparametric regression functions are developed. It is shown that, in both the super and ordinarily smooth cases, the convergence rates of the proposed partial deconvolution kernel estimators attain the lower bound. The Canadian Journal of Statistics 48: 535–560; 2020 © 2020 Statistical Society of Canada  相似文献   

16.
It has been found that, for a variety of probability distributions, there is a surprising linear relation between mode, mean, and median. In this article, the relation between mode, mean, and median regression functions is assumed to follow a simple parametric model. We propose a semiparametric conditional mode (mode regression) estimation for an unknown (unimodal) conditional distribution function in the context of regression model, so that any m-step-ahead mean and median forecasts can then be substituted into the resultant model to deliver m-step-ahead mode prediction. In the semiparametric model, Least Squared Estimator (LSEs) for the model parameters and the simultaneous estimation of the unknown mean and median regression functions by the local linear kernel method are combined to infer about the parametric and nonparametric components of the proposed model. The asymptotic normality of these estimators is derived, and the asymptotic distribution of the parameter estimates is also given and is shown to follow usual parametric rates in spite of the presence of the nonparametric component in the model. These results are applied to obtain a data-based test for the dependence of mode regression over mean and median regression under a regression model.  相似文献   

17.
The paper investigates various nonparametric models including regression, conditional distribution, conditional density and conditional hazard function, when the covariates are infinite dimensional. The main contribution is to prove uniform in bandwidth asymptotic results for kernel estimators of these functional operators. Then, the application issues, involving data-driven bandwidth selection, are discussed.  相似文献   

18.
Abstract

It is known that due to the existence of the nonparametric component, the usual estimators for the parametric component or its function in partially linear regression models are biased. Sometimes this bias is severe. To reduce the bias, we propose two jackknife estimators and compare them with the naive estimator. All three estimators are shown to be asymptotically equivalent and asymptotically normally distributed under some regularity conditions. However, through simulation we demonstrate that the jackknife estimators perform better than the naive estimator in terms of bias when the sample size is small to moderate. To make our results more useful, we also construct consistent estimators of the asymptotic variance, which are robust against heterogeneity of the error variances.  相似文献   

19.
Qunfang Xu 《Statistics》2017,51(6):1280-1303
In this paper, semiparametric modelling for longitudinal data with an unstructured error process is considered. We propose a partially linear additive regression model for longitudinal data in which within-subject variances and covariances of the error process are described by unknown univariate and bivariate functions, respectively. We provide an estimating approach in which polynomial splines are used to approximate the additive nonparametric components and the within-subject variance and covariance functions are estimated nonparametrically. Both the asymptotic normality of the resulting parametric component estimators and optimal convergence rate of the resulting nonparametric component estimators are established. In addition, we develop a variable selection procedure to identify significant parametric and nonparametric components simultaneously. We show that the proposed SCAD penalty-based estimators of non-zero components have an oracle property. Some simulation studies are conducted to examine the finite-sample performance of the proposed estimation and variable selection procedures. A real data set is also analysed to demonstrate the usefulness of the proposed method.  相似文献   

20.
Ruiqin Tian 《Statistics》2017,51(5):988-1005
In this paper, empirical likelihood inference for longitudinal data within the framework of partial linear regression models are investigated. The proposed procedures take into consideration the correlation within groups without involving direct estimation of nuisance parameters in the correlation matrix. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence intervals. A nonparametric version of Wilk's theorem for the limiting distribution of the empirical likelihood ratio is derived. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. The finite sample behaviour of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号