首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 文章讨论了含有随机效应的面板数据模型,利用非对称Laplace分布与分位回归之间的关系,文章建立了一种贝叶斯分层分位回归模型。通过对非对称Laplace分布的分解,文章给出了Gibbs抽样算法下模型参数的点估计及区间估计,模拟结果显示,在处理含随机效应的面板数据模型中,特别是在误差非正态的情况下,本文的方法优于传统的均值模型方法。文章最后利用新方法对我国各地区经济与就业面板数据进行了实证研究,得到了有利于宏观调控的有用信息。  相似文献   

2.
Mixture of linear regression models provide a popular treatment for modeling nonlinear regression relationship. The traditional estimation of mixture of regression models is based on Gaussian error assumption. It is well known that such assumption is sensitive to outliers and extreme values. To overcome this issue, a new class of finite mixture of quantile regressions (FMQR) is proposed in this article. Compared with the existing Gaussian mixture regression models, the proposed FMQR model can provide a complete specification on the conditional distribution of response variable for each component. From the likelihood point of view, the FMQR model is equivalent to the finite mixture of regression models based on errors following asymmetric Laplace distribution (ALD), which can be regarded as an extension to the traditional mixture of regression models with normal error terms. An EM algorithm is proposed to obtain the parameter estimates of the FMQR model by combining a hierarchical representation of the ALD. Finally, the iterated weighted least square estimation for each mixture component of the FMQR model is derived. Simulation studies are conducted to illustrate the finite sample performance of the estimation procedure. Analysis of an aphid data set is used to illustrate our methodologies.  相似文献   

3.
This paper considers a problem of variable selection in quantile regression with autoregressive errors. Recently, Wu and Liu (2009) investigated the oracle properties of the SCAD and adaptive-LASSO penalized quantile regressions under non identical but independent error assumption. We further relax the error assumptions so that the regression model can hold autoregressive errors, and then investigate theoretical properties for our proposed penalized quantile estimators under the relaxed assumption. Optimizing the objective function is often challenging because both quantile loss and penalty functions may be non-differentiable and/or non-concave. We adopt the concept of pseudo data by Oh et al. (2007) to implement a practical algorithm for the quantile estimate. In addition, we discuss the convergence property of the proposed algorithm. The performance of the proposed method is compared with those of the majorization-minimization algorithm (Hunter and Li, 2005) and the difference convex algorithm (Wu and Liu, 2009) through numerical and real examples.  相似文献   

4.
Based on the Bayesian framework of utilizing a Gaussian prior for the univariate nonparametric link function and an asymmetric Laplace distribution (ALD) for the residuals, we develop a Bayesian treatment for the Tobit quantile single-index regression model (TQSIM). With the location-scale mixture representation of the ALD, the posterior inferences of the latent variables and other parameters are achieved via the Markov Chain Monte Carlo computation method. TQSIM broadens the scope of applicability of the Tobit models by accommodating nonlinearity in the data. The proposed method is illustrated by two simulation examples and a labour supply dataset.  相似文献   

5.
Quantile regression has gained increasing popularity as it provides richer information than the regular mean regression, and variable selection plays an important role in the quantile regression model building process, as it improves the prediction accuracy by choosing an appropriate subset of regression predictors. Unlike the traditional quantile regression, we consider the quantile as an unknown parameter and estimate it jointly with other regression coefficients. In particular, we adopt the Bayesian adaptive Lasso for the maximum entropy quantile regression. A flat prior is chosen for the quantile parameter due to the lack of information on it. The proposed method not only addresses the problem about which quantile would be the most probable one among all the candidates, but also reflects the inner relationship of the data through the estimated quantile. We develop an efficient Gibbs sampler algorithm and show that the performance of our proposed method is superior than the Bayesian adaptive Lasso and Bayesian Lasso through simulation studies and a real data analysis.  相似文献   

6.
We consider for quantile regression and support vector regression a kernel-based online learning algorithm associated with a sequence of insensitive pinball loss functions. Our error analysis and derived learning rates show quantitatively that the statistical performance of the learning algorithm may vary with the quantile parameter ττ. In our analysis we overcome the technical difficulty caused by the varying insensitive parameter introduced with a motivation of sparsity.  相似文献   

7.
In this article, we investigate the limitations of traditional quantile function estimators and introduce a new class of quantile function estimators, namely, the semi-parametric tail-extrapolated quantile estimators, which has excellent performance for estimating the extreme tails with finite sample sizes. The smoothed bootstrap and direct density estimation via the characteristic function methods are developed for the estimation of confidence intervals. Through a comprehensive simulation study to compare the confidence interval estimations of various quantile estimators, we discuss the preferred quantile estimator in conjunction with the confidence interval estimation method to use under different circumstances. Data examples are given to illustrate the superiority of the semi-parametric tail-extrapolated quantile estimators. The new class of quantile estimators is obtained by slight modification of traditional quantile estimators, and therefore, should be specifically appealing to researchers in estimating the extreme tails.  相似文献   

8.
Q. F. Xu  C. Cai  X. Huang 《Statistics》2019,53(1):26-42
In recent decades, quantile regression has received much more attention from academics and practitioners. However, most of existing computational algorithms are only effective for small or moderate size problems. They cannot solve quantile regression with large-scale data reliably and efficiently. To this end, we propose a new algorithm to implement quantile regression on large-scale data using the sparse exponential transform (SET) method. This algorithm mainly constructs a well-conditioned basis and a sampling matrix to reduce the number of observations. It then solves a quantile regression problem on this reduced matrix and obtains an approximate solution. Through simulation studies and empirical analysis of a 5% sample of the US 2000 Census data, we demonstrate efficiency of the SET-based algorithm. Numerical results indicate that our new algorithm is effective in terms of computation time and performs well for large-scale quantile regression.  相似文献   

9.
Bridge penalized regression has many desirable statistical properties such as unbiasedness, sparseness as well as ‘oracle’. In Bayesian framework, bridge regularized penalty can be implemented based on generalized Gaussian distribution (GGD) prior. In this paper, we incorporate Bayesian bridge-randomized penalty and its adaptive version into the quantile regression (QR) models with autoregressive perturbations to conduct Bayesian penalization estimation. Employing the working likelihood of the asymmetric Laplace distribution (ALD) perturbations, the Bayesian joint hierarchical models are established. Based on the mixture representations of the ALD and generalized Gaussian distribution (GGD) priors of coefficients, the hybrid algorithms based on Gibbs sampler and Metropolis-Hasting sampler are provided to conduct fully Bayesian posterior estimation. Finally, the proposed Bayesian procedures are illustrated by some simulation examples and applied to a real data application of the electricity consumption.  相似文献   

10.
Quantile regression is a very important statistical tool for predictive modelling and risk assessment. For many applications, conditional quantile at different levels are estimated separately. Consequently the monotonicity of conditional quantiles can be violated when quantile regression curves cross each other. In this paper, we propose a new Bayesian multiple quantile regression based on heavy tailed distribution for non-crossing. We consider a linear quantile regression model for simultaneous Bayesian estimation of multiple quantiles based on a regularly varying assumptions. The numerical and competitive performance of the proposed method is illustrated by simulation.  相似文献   

11.
Nonparametric additive models are powerful techniques for multivariate data analysis. Although many procedures have been developed for estimating additive components both in mean regression and quantile regression, the problem of selecting relevant components has not been addressed much especially in quantile regression. We present a doubly-penalized estimation procedure for component selection in additive quantile regression models that combines basis function approximation with a ridge-type penalty and a variant of the smoothly clipped absolute deviation penalty. We show that the proposed estimator identifies relevant and irrelevant components consistently and achieves the nonparametric optimal rate of convergence for the relevant components. We also provide an accurate and efficient computation algorithm to implement the estimator and demonstrate its performance through simulation studies. Finally, we illustrate our method via a real data example to identify important body measurements to predict percentage of body fat of an individual.  相似文献   

12.
This article aims to put forward a new method to solve the linear quantile regression problems based on EM algorithm using a location-scale mixture of the asymmetric Laplace error distribution. A closed form of the estimator of the unknown parameter vector β based on EM algorithm, is obtained. In addition, some simulations are conducted to illustrate the performance of the proposed method. Simulation results demonstrate that the proposed algorithm performs well. Finally, the classical Engel data is fitted and the Bootstrap confidence intervals for estimators are provided.  相似文献   

13.
14.
A new approximate Bayesian computation (ABC) algorithm is proposed specifically designed for models involving quantile distributions. The proposed algorithm compares favourably with two other ABC algorithms when applied to examples involving quantile distributions.  相似文献   

15.
为了尝试使用贝叶斯方法研究比例数据的分位数回归统计推断问题,首先基于Tobit模型给出了分位数回归建模方法,然后通过选取合适的先验分布得到了贝叶斯层次模型,进而给出了各参数的后验分布并用于Gibbs抽样。数值模拟分析验证了所提出的贝叶斯推断方法对于比例数据分析的有效性。最后,将贝叶斯方法应用于美国加州海洛因吸毒数据,在不同的分位数水平下揭示了吸毒频率的影响因素。  相似文献   

16.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression.  相似文献   

17.
We study variable selection in quantile regression with multiple responses. Instead of applying conventional penalized quantile regression to each response separately, it is desired to solve them simultaneously when the sparsity patterns of the regression coefficients for different responses are similar, which is often the case in practice. In this paper, we propose employing a hierarchical penalty that enables us to detect a common sparsity pattern shared between different responses as well as additional sparsity patterns within the selected variables. We establish the oracle property of the proposed method and demonstrate it offers better performance than existing approaches.  相似文献   

18.
田茂再  梅波 《统计研究》2019,36(8):114-128
本文考虑函数型数据的结构特征,针对两类函数型变量分位回归模型(函数型因变量对标量自变量和函数型因变量对函数型自变量),基于函数型倾斜分位曲线的定义构建新型函数型倾斜分位回归模型。对于第二类模型,本文分别考虑样条基函数对模型系数展开和函数型主成分基函数对函数型自变量展开,得到倾斜分位回归模型的基本形式。参数估计采用成分梯度Boosting算法最小化加权非对称损失函数,提高计算效率。在理论上证明了倾斜分位回归模型的系数估计量均服从渐近正态分布。模拟和实证研究结果显示,倾斜分位回归模型比已有的逐点分位回归模型具有更好的拟合效果。根据积分均方预测误差准则,本文提出的模型有一致较好的预测能力。  相似文献   

19.
The three-parameter asymmetric Laplace distribution (ALD) has received increasing attention in the field of quantile regression due to an important feature between its location and asymmetric parameters. On the basis of the representation of the ALD as a normal-variance–mean mixture with an exponential mixing distribution, this article develops EM and generalized EM algorithms, respectively, for computing regression quantiles of linear and nonlinear regression models. It is interesting to show that the proposed EM algorithm and the MM (Majorization–Minimization) algorithm for quantile regressions are really the same in terms of computation, since the updating formula of them are the same. This provides a good example that connects the EM and MM algorithms. Simulation studies show that the EM algorithm can successfully recover the true parameters in quantile regressions.  相似文献   

20.
面板数据的自适应Lasso分位回归方法研究   总被引:1,自引:0,他引:1  
如何在对参数进行估计的同时自动选择重要解释变量,一直是面板数据分位回归模型中讨论的热点问题之一。通过构造一种含多重随机效应的贝叶斯分层分位回归模型,在假定固定效应系数先验服从一种新的条件Laplace分布的基础上,给出了模型参数估计的Gibbs抽样算法。考虑到不同重要程度的解释变量权重系数压缩程度应该不同,所构造的先验信息具有自适应性的特点,能够准确地对模型中重要解释变量进行自动选取,且设计的切片Gibbs抽样算法能够快速有效地解决模型中各个参数的后验均值估计问题。模拟结果显示,新方法在参数估计精确度和变量选择准确度上均优于现有文献的常用方法。通过对中国各地区多个宏观经济指标的面板数据进行建模分析,演示了新方法估计参数与挑选变量的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号