首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifiability of Finite Mixtures of Elliptical Distributions   总被引:2,自引:0,他引:2  
Abstract.  We present general results on the identifiability of finite mixtures of elliptical distributions under conditions on the characteristic generators or density generators. Examples include the multivariate t -distribution, symmetric stable laws, exponential power and Kotz distributions. In each case, the shape parameter is allowed to vary in the mixture, in addition to the location vector and the scatter matrix. Furthermore, we discuss the identifiability of finite mixtures of elliptical densities with generators that correspond to scale mixtures of normal distributions.  相似文献   

2.
Abstract. In this article, we maximize the efficiency of a multivariate S‐estimator under a constraint on the breakdown point. In the linear regression model, it is known that the highest possible efficiency of a maximum breakdown S‐estimator is bounded above by 33 per cent for Gaussian errors. We prove the surprising result that in dimensions larger than one, the efficiency of a maximum breakdown S‐estimator of location and scatter can get arbitrarily close to 100 per cent, by an appropriate selection of the loss function.  相似文献   

3.
We discuss the robustness and asymptotic behaviour of τ-estimators for multivariate location and scatter. We show that τ-estimators correspond to multivariate M-estimators defined by a weighted average of redescending ψ-functions, where the weights are adaptive. We prove consistency and asymptotic normality under weak assumptions on the underlying distribution, show that τ-estimators have a high breakdown point, and obtain the influence function at general distributions. In the special case of a location-scatter family, τ-estimators are asymptotically equivalent to multivariate S-estimators defined by means of a weighted ψ-function. This enables us to combine a high breakdown point and bounded influence with good asymptotic efficiency for the location and covariance estimator.  相似文献   

4.
Abstract

Constrained M (CM) estimates of multivariate location and scatter [Kent, J. T., Tyler, D. E. (1996). Constrained M-estimation for multivariate location and scatter. Ann. Statist. 24:1346–1370] are defined as the global minimum of an objective function subject to a constraint. These estimates combine the good global robustness properties of the S estimates and the good local robustness properties of the redescending M estimates. The CM estimates are not explicitly defined. Numerical methods have to be used to compute the CM estimates. In this paper, we give an algorithm to compute the CM estimates. Using the algorithm, we give a small simulation study to demonstrate the capability of the algorithm finding the CM estimates, and also to explore the finite sample behavior of the CM estimates. We also use the CM estimators to estimate the location and scatter parameters of some multivariate data sets to see the performance of the CM estimates dealing with the real data sets that may contain outliers.  相似文献   

5.
Summary.  A general method for exploring multivariate data by comparing different estimates of multivariate scatter is presented. The method is based on the eigenvalue–eigenvector decomposition of one scatter matrix relative to another. In particular, it is shown that the eigenvectors can be used to generate an affine invariant co-ordinate system for the multivariate data. Consequently, we view this method as a method for invariant co-ordinate selection . By plotting the data with respect to this new invariant co-ordinate system, various data structures can be revealed. For example, under certain independent components models, it is shown that the invariant co- ordinates correspond to the independent components. Another example pertains to mixtures of elliptical distributions. In this case, it is shown that a subset of the invariant co-ordinates corresponds to Fisher's linear discriminant subspace, even though the class identifications of the data points are unknown. Some illustrative examples are given.  相似文献   

6.
Estimating multivariate location and scatter with both affine equivariance and positive breakdown has always been difficult. A well-known estimator which satisfies both properties is the Minimum Volume Ellipsoid Estimator (MVE). Computing the exact MVE is often not feasible, so one usually resorts to an approximate algorithm. In the regression setup, algorithms for positive-breakdown estimators like Least Median of Squares typically recompute the intercept at each step, to improve the result. This approach is called intercept adjustment. In this paper we show that a similar technique, called location adjustment, can be applied to the MVE. For this purpose we use the Minimum Volume Ball (MVB), in order to lower the MVE objective function. An exact algorithm for calculating the MVB is presented. As an alternative to MVB location adjustment we propose L 1 location adjustment, which does not necessarily lower the MVE objective function but yields more efficient estimates for the location part. Simulations compare the two types of location adjustment. We also obtain the maxbias curves of L 1 and the MVB in the multivariate setting, revealing the superiority of L 1.  相似文献   

7.
This paper presents a procedure for testing the hypothesis that the underlying distribution of the data is elliptical when using robust location and scatter estimators instead of the sample mean and covariance matrix. Under mild assumptions that include elliptical distributions without first moments, we derive the test statistic asymptotic behavior under the null hypothesis and under special alternatives. Numerical experiments allow to compare the behavior of the tests based on the sample mean and covariance matrix with that based on robust estimators, under various elliptical distributions and different alternatives. We also provide a numerical comparison with other competing tests.  相似文献   

8.
9.
In the linear regression model with elliptical errors, a shrinkage ridge estimator is proposed. In this regard, the restricted ridge regression estimator under sub-space restriction is improved by incorporating a general function which satisfies Taylor’s series expansion. Approximate quadratic risk function of the proposed shrinkage ridge estimator is evaluated in the elliptical regression model. A Monte Carlo simulation study and analysis based on a real data example are considered for performance analysis. It is evident from the numerical results that the shrinkage ridge estimator performs better than both unrestricted and restricted estimators in the multivariate t-regression model, for some specific cases.  相似文献   

10.
Abstract

This paper studies decision theoretic properties of Stein type shrinkage estimators in simultaneous estimation of location parameters in a multivariate skew-normal distribution with known skewness parameters under a quadratic loss. The benchmark estimator is the best location equivariant estimator which is minimax. A class of shrinkage estimators improving on the best location equivariant estimator is constructed when the dimension of the location parameters is larger than or equal to four. An empirical Bayes estimator is also derived, and motivated from the Bayesian procedure, we suggest a simple skew-adjusted shrinkage estimator and show its dominance property. The performances of these estimators are investigated by simulation.  相似文献   

11.
In the classical principal component analysis (PCA), the empirical influence function for the sensitivity coefficient ρ is used to detect influential observations on the subspace spanned by the dominants principal components. In this article, we derive the influence function of ρ in the case where the reweighted minimum covariance determinant (MCD1) is used as estimator of multivariate location and scatter. Our aim is to confirm the reliability in terms of robustness of the MCD1 via the approach based on the influence function of the sensitivity coefficient.  相似文献   

12.
Based on the projection depth weighted mean and scatter estimation of the joint distribution of (x, y), we introduce a robust estimator of the regression coefficients for the multivariate linear model. The new estimator possesses desirable properties including affine invariance, Fisher consistency, and asymptotic normality. Also, we study the robustness of the estimator in terms of breakdown point and influence function. Extensive simulation studies are performed to investigate the finite sample behavior of robustness and efficiency. The methodology is illustrated with a real data example.  相似文献   

13.
The two parametric distribution functions appearing in the extreme-value theory – the generalized extreme-value distribution and the generalized Pareto distribution – have log-concave densities if the extreme-value index γ∈[?1, 0]. Replacing the order statistics in tail-index estimators by their corresponding quantiles from the distribution function that is based on the estimated log-concave density ? f n leads to novel smooth quantile and tail-index estimators. These new estimators aim at estimating the tail index especially in small samples. Acting as a smoother of the empirical distribution function, the log-concave distribution function estimator reduces estimation variability to a much greater extent than it introduces bias. As a consequence, Monte Carlo simulations demonstrate that the smoothed version of the estimators are well superior to their non-smoothed counterparts, in terms of mean-squared error.  相似文献   

14.
On Smooth Statistical Tail Functionals   总被引:4,自引:0,他引:4  
Many estimators of the extreme value index of a distribution function F that are based on a certain number k n of largest order statistics can be represented as a statistical tail function al, that is a functional T applied to the empirical tail quantile function Q n. We study the asymptotic behaviour of such estimators with a scale and location invariant functional T under weak second order conditions on F . For that purpose first a new approximation of the empirical tail quantile function is established. As a consequence we obtain weak consistency and asymptotic normality of T ( Q n) if T is continuous and Hadamard differentiable, respectively, at the upper quantile function of a generalized Pareto distribution and k pn tends to infinity sufficiently slowly. Then we investigate the asymptotic variance and bias. In particular, those functionals T re characterized that lead to an estimator with minimal asymptotic variance. Finally, we introduce a method to construct estimators of the extreme value index with a made-to-order asymptotic behaviour  相似文献   

15.
Abstract. For probability distributions on ? q, a detailed study of the breakdown properties of some multivariate M‐functionals related to Tyler's [Ann. Statist. 15 (1987) 234] ‘distribution‐free’ M‐functional of scatter is given. These include a symmetrized version of Tyler's M‐functional of scatter, and the multivariate t M‐functionals of location and scatter. It is shown that for ‘smooth’ distributions, the (contamination) breakdown point of Tyler's M‐functional of scatter and of its symmetrized version are 1/q and , respectively. For the multivariate t M‐functional which arises from the maximum likelihood estimate for the parameters of an elliptical t distribution on ν ≥ 1 degrees of freedom the breakdown point at smooth distributions is 1/( q + ν). Breakdown points are also obtained for general distributions, including empirical distributions. Finally, the sources of breakdown are investigated. It turns out that breakdown can only be caused by contaminating distributions that are concentrated near low‐dimensional subspaces.  相似文献   

16.
A new approach is suggested for choosing the threshold when fitting the Hill estimator of a tail exponent to extreme value data. Our method is based on an easily computed diagnostic, which in turn is founded directly on the Hill estimator itself, 'symmetrized' to remove the effect of the tail exponent but designed to emphasize biases in estimates of that exponent. The attractions of the method are its accuracy, its simplicity and the generality with which it applies. This generality implies that the technique has somewhat different goals from more conventional approaches, which are designed to accommodate the minor component of a postulated two-component Pareto mixture. Our approach does not rely on the second component being Pareto distributed. Nevertheless, in the conventional setting it performs competitively with recently proposed methods, and in more general cases it achieves optimal rates of convergence. A by-product of our development is a very simple and practicable exponential approximation to the distribution of the Hill estimator under departures from the Pareto distribution.  相似文献   

17.
The geographical relative risk function is a useful tool for investigating the spatial distribution of disease based on case and control data. The most common way of estimating this function is using the ratio of bivariate kernel density estimates constructed from the locations of cases and controls, respectively. An alternative is to use a local-linear (LL) estimator of the log-relative risk function. In both cases, the choice of bandwidth is critical. In this article, we examine the relative performance of the two estimation techniques using a variety of data-driven bandwidth selection methods, including likelihood cross-validation (CV), least-squares CV, rule-of-thumb reference methods, and a new approximate plug-in (PI) bandwidth for the LL estimator. Our analysis includes the comparison of asymptotic results; a simulation study; and application of the estimators on two real data sets. Our findings suggest that the density ratio method implemented with the least-squares CV bandwidth selector is generally best, with the LL estimator with PI bandwidth being competitive in applications with strong large-scale trends but much worse in situations with elliptical clusters.  相似文献   

18.
In this paper, the shape matrix estimators based on spatial sign and rank vectors are considered. The estimators considered here are slight modifications of the estimators introduced in Dümbgen (1998) and Oja and Randles (2004) and further studied for example in Sirkiä et al. (2009). The shape estimators are computed using pairwise differences of the observed data, therefore there is no need to estimate the location center of the data. When the estimator is based on signs, the use of differences also implies that the estimators have the so called independence property if the estimator, that is used as an initial estimator, has it. The influence functions and limiting distributions of the estimators are derived at the multivariate elliptical case. The estimators are shown to be highly efficient in the multinormal case, and for heavy-tailed distributions they outperform the shape estimator based on sample covariance matrix.  相似文献   

19.
Abstract.  We consider estimation of the upper boundary point F −1 (1) of a distribution function F with finite upper boundary or 'frontier' in deconvolution problems, primarily focusing on deconvolution models where the noise density is decreasing on the positive halfline. Our estimates are based on the (non-parametric) maximum likelihood estimator (MLE) of F . We show that (1) is asymptotically never too small. If the convolution kernel has bounded support the estimator (1) can generally be expected to be consistent. In this case, we establish a relation between the extreme value index of F and the rate of convergence of (1) to the upper support point for the 'boxcar' deconvolution model. If the convolution density has unbounded support, (1) can be expected to overestimate the upper support point. We define consistent estimators , for appropriately chosen vanishing sequences ( β n ) and study these in a particular case.  相似文献   

20.
This paper generalizes Nagar's (1959) approximation to the finite sample mean squared error (MSE) of the instrumental variables (IV) estimator to the case in which the errors possess an elliptical distribution whose moments exist up to infinite order. This allows for types of excess kurtosis exhibited by some financial data series. This approximation is compared numerically to Knight's (1985) formulae for the exact moments of the IV estimator under nonnormality. We use the results to explore two questions on instrument selection. First, we complement Buse's (1992) analysis by considering the impact of additional instruments on both bias and MSE. Second, we evaluate the properties of Andrews's (1999) selection method in terms of the bias and MSE of the resulting IV estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号