首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Squared error loss remains the most commonly used loss function for constructing a Bayes estimator of the parameter of interest. However, it can lead to suboptimal solutions when a parameter is defined on a restricted space. It can also be an inappropriate choice in the context when an extreme overestimation and/or underestimation results in severe consequences and a more conservative estimator is preferred. We advocate a class of loss functions for parameters defined on restricted spaces which infinitely penalize boundary decisions like the squared error loss does on the real line. We also recall several properties of loss functions such as symmetry, convexity and invariance. We propose generalizations of the squared error loss function for parameters defined on the positive real line and on an interval. We provide explicit solutions for corresponding Bayes estimators and discuss multivariate extensions. Four well-known Bayesian estimation problems are used to demonstrate inferential benefits the novel Bayes estimators can provide in the context of restricted estimation.  相似文献   

2.
In this work, an approach to the Bayesian estimation in a bisexual Galton-Watson process is considered. First we study an important parametric case assuming offspring distribution belonging to the bivariate series power family of distributions and then, we continue to investigate the nonparametric case. In both situations, Bayes estimators under weighted squared error loss function, for means, variances and covariance of the off spring distribution are obtained. For the superadditive case, the Bayes estimation of the asymptotic growth rate is also considered. Illustrative examples are given.  相似文献   

3.
4.
The Bayesian choice of crop variety and fertilizer dose   总被引:1,自引:0,他引:1  
Recent contributions to the theory of optimizing fertilizer doses in agricultural crop production have introduced Bayesian ideas to incorporate information on crop yield from several environments and on soil nutrients from a soil test, but they have not used a fully Bayesian formulation. We present such a formulation and demonstrate how the resulting Bayes decision procedure can be evaluated in practice by using Markov chain Monte Carlo methods. The approach incorporates expert knowledge of the crop and of regional and local soil conditions and allows a choice of crop variety as well as of fertilizer level. Alternative dose–response functions are expressed in terms of a common interpretable set of parameters to facilitate model comparisons and the specification of prior distributions. The approach is illustrated with a set of yield data from spring barley nitrogen–response trials and is found to be robust to changes in the dose–response function and the prior distribution for indigenous soil nitrogen.  相似文献   

5.
Kontkanen  P.  Myllymäki  P.  Silander  T.  Tirri  H.  Grünwald  P. 《Statistics and Computing》2000,10(1):39-54
In this paper we are interested in discrete prediction problems for a decision-theoretic setting, where the task is to compute the predictive distribution for a finite set of possible alternatives. This question is first addressed in a general Bayesian framework, where we consider a set of probability distributions defined by some parametric model class. Given a prior distribution on the model parameters and a set of sample data, one possible approach for determining a predictive distribution is to fix the parameters to the instantiation with the maximum a posteriori probability. A more accurate predictive distribution can be obtained by computing the evidence (marginal likelihood), i.e., the integral over all the individual parameter instantiations. As an alternative to these two approaches, we demonstrate how to use Rissanen's new definition of stochastic complexity for determining predictive distributions, and show how the evidence predictive distribution with Jeffrey's prior approaches the new stochastic complexity predictive distribution in the limit with increasing amount of sample data. To compare the alternative approaches in practice, each of the predictive distributions discussed is instantiated in the Bayesian network model family case. In particular, to determine Jeffrey's prior for this model family, we show how to compute the (expected) Fisher information matrix for a fixed but arbitrary Bayesian network structure. In the empirical part of the paper the predictive distributions are compared by using the simple tree-structured Naive Bayes model, which is used in the experiments for computational reasons. The experimentation with several public domain classification datasets suggest that the evidence approach produces the most accurate predictions in the log-score sense. The evidence-based methods are also quite robust in the sense that they predict surprisingly well even when only a small fraction of the full training set is used.  相似文献   

6.
This paper studies the problem of designing a curtailed Bayesian sampling plan (CBSP) with Type-II censored data. We first derive the Bayesian sampling plan (BSP) for exponential distributions based on Type-II censored samples in a general loss function. For the conjugate prior with quadratic loss function, an explicit expression for the Bayes decision function is derived. Using the property of monotonicity of the Bayes decision function, a new Bayesian sampling plan modified by the curtailment procedure, called a CBSP, is proposed. It is shown that the risk of CBSP is less than or equal to that of BSP. Comparisons among some existing BSPs and the proposed CBSP are given. Monte Carlo simulations are conducted, and numerical results indicate that the CBSP outperforms those early existing sampling plans if the time loss is considered in the loss function.  相似文献   

7.
We consider the problem of deriving Bayesian inference procedures via the concept of relative surprise. The mathematical concept of surprise has been developed by I.J. Good in a long sequence of papers. We make a modification to this development that permits the avoidance of a serious defect; namely, the change of variable problem. We apply relative surprise to the development of estimation, hypothesis testing and model checking procedures. Important advantages of the relative surprise approach to inference include the lack of dependence on a particular loss function and complete freedom to the statistician in the choice of prior for hypothesis testing problems. Links are established with common Bayesian inference procedures such as highest posterior density regions, modal estimates and Bayes factors. From a practical perspective new inference procedures arise that possess good properties.  相似文献   

8.
Inference in hybrid Bayesian networks using dynamic discretization   总被引:1,自引:0,他引:1  
We consider approximate inference in hybrid Bayesian Networks (BNs) and present a new iterative algorithm that efficiently combines dynamic discretization with robust propagation algorithms on junction trees. Our approach offers a significant extension to Bayesian Network theory and practice by offering a flexible way of modeling continuous nodes in BNs conditioned on complex configurations of evidence and intermixed with discrete nodes as both parents and children of continuous nodes. Our algorithm is implemented in a commercial Bayesian Network software package, AgenaRisk, which allows model construction and testing to be carried out easily. The results from the empirical trials clearly show how our software can deal effectively with different type of hybrid models containing elements of expert judgment as well as statistical inference. In particular, we show how the rapid convergence of the algorithm towards zones of high probability density, make robust inference analysis possible even in situations where, due to the lack of information in both prior and data, robust sampling becomes unfeasible.  相似文献   

9.
In this paper we motivate solutions to simultaneous estimation of multiple dynamic processes in situations where the correspondence between the set of measurements and the set of processes is uncertain and thus special modelling is required to accomodate the unclassified data. We derive the optimal Bayesian solution for non linear processes which turns out to be very computationally complicated, and then suggest a quasi Bayes approximation which removes the complication due to the uncertain measurement-process correspondence. Numerical illustrations are provided for the linear case.  相似文献   

10.
Bayes uniform model under the squared error loss function is shown to be completely identifiable by the form of the Bayes estimates of the scale parameter. This results in solving a specific functional equation. A complete characterization of differentiable Bayes estimators (BE) and generalized Bayes estimators (GBE) is given as well as relations between degrees of smoothness of the estimators and the priors. Characterizations of strong (generalized Bayes) Bayes sequence (SBS or SGBS) are also investigated. A SBS is a sequence of estimators (one for each sample size) where all its components are BE generated by the same prior measure. A complete solution is given for polynomial Bayesian estimation.  相似文献   

11.
Based on ordered ranked set sample, Bayesian estimation of the model parameter as well as prediction of the unobserved data from Rayleigh distribution are studied. The Bayes estimates of the parameter involved are obtained using both squared error and asymmetric loss functions. The Bayesian prediction approach is considered for predicting the unobserved lifetimes based on a two-sample prediction problem. A real life dataset and simulation study are used to illustrate our procedures.  相似文献   

12.
We present a Bayesian analysis of a piecewise linear model constructed by using basis functions which generalizes the univariate linear spline to higher dimensions. Prior distributions are adopted on both the number and the locations of the splines, which leads to a model averaging approach to prediction with predictive distributions that take into account model uncertainty. Conditioning on the data produces a Bayes local linear model with distributions on both predictions and local linear parameters. The method is spatially adaptive and covariate selection is achieved by using splines of lower dimension than the data.  相似文献   

13.
The problem of Bayesian and robust Bayesian estimation with some bounded and asymmetric loss function ABL is considered for various models. The prior distribution is not exactly specified and covers the conjugate family of prior distributions. The posterior regret, most robust and conditional Γ-minimax estimators are constructed and a preliminary comparison with square-error loss and LINEX loss is presented.  相似文献   

14.
Common loss functions used for the restoration of grey scale images include the zero–one loss and the sum of squared errors. The corresponding estimators, the posterior mode and the posterior marginal mean, are optimal Bayes estimators with respect to their way of measuring the loss for different error configurations. However, both these loss functions have a fundamental weakness: the loss does not depend on the spatial structure of the errors. This is important because a systematic structure in the errors can lead to misinterpretation of the estimated image. We propose a new loss function that also penalizes strong local sample covariance in the error and we discuss how the optimal Bayes estimator can be estimated using a two-step Markov chain Monte Carlo and simulated annealing algorithm. We present simulation results for some artificial data which show improvement with respect to small structures in the image.  相似文献   

15.
A robust Bayesian analysis in a conjugate normal framework for the simple ANOVA model is suggested. By fixing the prior mean and varying the prior covariance matrix over a restricted class, we obtain the so-called HiFi and core region, a union and intersection of HPD regions. Based on these robust HPD regions we develop the concept of a ‘robust Bayesian judgement’ procedure. We apply this approach to the simple analysis of variance model with orthogonal designs. The example analyses the costs of an asthma medication obtained by a two-way cross-over study.  相似文献   

16.
ABSTRACT

In the current study we develop the robust Bayesian inference for the generalized inverted family of distributions (GIFD) under an ε-contamination class of prior distributions for the shape parameter α, with different possibilities of known and unknown scale parameter. We used Type II censoring and Bartholomew sampling scheme (1963) for the following derivations under the squared-error loss function (SELF) and linear exponential (LINEX) loss function : ML-II Bayes estimators of the i) parameters; ii) Reliability function and; iii) Hazard function. We also present simulation study and analysis of a real data set.  相似文献   

17.
This article considers the objective Bayesian testing in the normal regression models with first-order autoregressive residuals. We propose some solutions based on a Bayesian model selection procedure to this problem where no subjective input is considered. We construct the proper priors for testing the autocorrelation coefficient based on measures of divergence between competing models, which is called the divergence-based (DB) priors and then propose the objective Bayesian decision-theoretic rule, which is called the Bayesian reference criterion (BRC). Finally, we derive the intrinsic test statistic for testing the autocorrelation coefficient. The behavior of the Bayes factor-based DB priors is examined by comparing with the BRC in a simulation study and an example.  相似文献   

18.
In this paper we consider the problems of estimation and prediction when observed data from a lognormal distribution are based on lower record values and lower record values with inter-record times. We compute maximum likelihood estimates and asymptotic confidence intervals for model parameters. We also obtain Bayes estimates and the highest posterior density (HPD) intervals using noninformative and informative priors under square error and LINEX loss functions. Furthermore, for the problem of Bayesian prediction under one-sample and two-sample framework, we obtain predictive estimates and the associated predictive equal-tail and HPD intervals. Finally for illustration purpose a real data set is analyzed and simulation study is conducted to compare the methods of estimation and prediction.  相似文献   

19.
This article considers a Bayesian hierarchical model for multiple comparisons in linear models where the population medians satisfy a simple order restriction. Representing the asymmetric Laplace distribution as a scale mixture of normals with an exponential mixing density and a continuous prior restricted to order constraints, a Gibbs sampling algorithm for parameter estimation and simultaneous comparison of treatment medians is proposed. Posterior probabilities of all possible hypotheses on the equality/inequality of treatment medians are estimated using Bayes factors that are computed via the Savage-Dickey density ratios. The performance of the proposed median-based model is investigated in the simulated and real datasets. The results show that the proposed method can outperform the commonly used method that is based on treatment means, when data are from nonnormal distributions.  相似文献   

20.
Robust Bayesian methodology deals with the problem of explaining uncertainty of the inputs (the prior, the model, and the loss function) and provides a breakthrough way to take into account the input’s variation. If the uncertainty is in terms of the prior knowledge, robust Bayesian analysis provides a way to consider the prior knowledge in terms of a class of priors \(\varGamma \) and derive some optimal rules. In this paper, we motivate utilizing robust Bayes methodology under the asymmetric general entropy loss function in insurance and pursue two main goals, namely (i) computing premiums and (ii) predicting a future claim size. To achieve the goals, we choose some classes of priors and deal with (i) Bayes and posterior regret gamma minimax premium computation, (ii) Bayes and posterior regret gamma minimax prediction of a future claim size under the general entropy loss. We also perform a prequential analysis and compare the performance of posterior regret gamma minimax predictors against the Bayes predictors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号