首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper proposes a Bayesian quantile regression method for hierarchical linear models. Existing approaches of hierarchical linear quantile regression models are scarce and most of them were not from the perspective of Bayesian thoughts, which is important for hierarchical models. In this paper, based on Bayesian theories and Markov Chain Monte Carlo methods, we introduce Asymmetric Laplace distributed errors to simulate joint posterior distributions of population parameters and across-unit parameters and then derive their posterior quantile inferences. We run a simulation as the proposed method to examine the effects on parameters induced by units and quantile levels; the method is also applied to study the relationship between Chinese rural residents' family annual income and their cultivated areas. Both the simulation and real data analysis indicate that the method is effective and accurate.  相似文献   

2.
Abstract

Handling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

3.
In this paper, we discuss a fully Bayesian quantile inference using Markov Chain Monte Carlo (MCMC) method for longitudinal data models with random effects. Under the assumption of error term subject to asymmetric Laplace distribution, we establish a hierarchical Bayesian model and obtain the posterior distribution of unknown parameters at τ-th level. We overcome the current computational limitations using two approaches. One is the general MCMC technique with Metropolis–Hastings algorithm and another is the Gibbs sampling from the full conditional distribution. These two methods outperform the traditional frequentist methods under a wide array of simulated data models and are flexible enough to easily accommodate changes in the number of random effects and in their assumed distribution. We apply the Gibbs sampling method to analyse a mouse growth data and some different conclusions from those in the literatures are obtained.  相似文献   

4.
Normality and independence of error terms are typical assumptions for partial linear models. However, these assumptions may be unrealistic in many fields, such as economics, finance and biostatistics. In this paper, a Bayesian analysis for partial linear model with first-order autoregressive errors belonging to the class of the scale mixtures of normal distributions is studied in detail. The proposed model provides a useful generalization of the symmetrical linear regression model with independent errors, since the distribution of the error term covers both correlated and thick-tailed distributions, and has a convenient hierarchical representation allowing easy implementation of a Markov chain Monte Carlo scheme. In order to examine the robustness of the model against outlying and influential observations, a Bayesian case deletion influence diagnostics based on the Kullback–Leibler (K–L) divergence is presented. The proposed method is applied to monthly and daily returns of two Chilean companies.  相似文献   

5.
This paper considers a problem of variable selection in quantile regression with autoregressive errors. Recently, Wu and Liu (2009) investigated the oracle properties of the SCAD and adaptive-LASSO penalized quantile regressions under non identical but independent error assumption. We further relax the error assumptions so that the regression model can hold autoregressive errors, and then investigate theoretical properties for our proposed penalized quantile estimators under the relaxed assumption. Optimizing the objective function is often challenging because both quantile loss and penalty functions may be non-differentiable and/or non-concave. We adopt the concept of pseudo data by Oh et al. (2007) to implement a practical algorithm for the quantile estimate. In addition, we discuss the convergence property of the proposed algorithm. The performance of the proposed method is compared with those of the majorization-minimization algorithm (Hunter and Li, 2005) and the difference convex algorithm (Wu and Liu, 2009) through numerical and real examples.  相似文献   

6.
Single index model conditional quantile regression is proposed in order to overcome the dimensionality problem in nonparametric quantile regression. In the proposed method, the Bayesian elastic net is suggested for single index quantile regression for estimation and variables selection. The Gaussian process prior is considered for unknown link function and a Gibbs sampler algorithm is adopted for posterior inference. The results of the simulation studies and numerical example indicate that our propose method, BENSIQReg, offers substantial improvements over two existing methods, SIQReg and BSIQReg. The BENSIQReg has consistently show a good convergent property, has the least value of median of mean absolute deviations and smallest standard deviations, compared to the other two methods.  相似文献   

7.
Quantile regression has gained increasing popularity as it provides richer information than the regular mean regression, and variable selection plays an important role in the quantile regression model building process, as it improves the prediction accuracy by choosing an appropriate subset of regression predictors. Unlike the traditional quantile regression, we consider the quantile as an unknown parameter and estimate it jointly with other regression coefficients. In particular, we adopt the Bayesian adaptive Lasso for the maximum entropy quantile regression. A flat prior is chosen for the quantile parameter due to the lack of information on it. The proposed method not only addresses the problem about which quantile would be the most probable one among all the candidates, but also reflects the inner relationship of the data through the estimated quantile. We develop an efficient Gibbs sampler algorithm and show that the performance of our proposed method is superior than the Bayesian adaptive Lasso and Bayesian Lasso through simulation studies and a real data analysis.  相似文献   

8.
Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples.  相似文献   

9.
This paper considers quantile regression models using an asymmetric Laplace distribution from a Bayesian point of view. We develop a simple and efficient Gibbs sampling algorithm for fitting the quantile regression model based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the resulting Gibbs sampler can be accomplished by sampling from either normal or generalized inverse Gaussian distribution. We also discuss some possible extensions of our approach, including the incorporation of a scale parameter, the use of double exponential prior, and a Bayesian analysis of Tobit quantile regression. The proposed methods are illustrated by both simulated and real data.  相似文献   

10.
In this paper, we discuss the regularization in linear-mixed quantile regression. A hierarchical Bayesian model is used to shrink the fixed and random effects towards the common population values by introducing an l1 penalty in the mixed quantile regression check function. A Gibbs sampler is developed to simulate the parameters from the posterior distributions. Through simulation studies and analysis of an age-related macular degeneration (ARMD) data, we assess the performance of the proposed method. The simulation studies and the ARMD data analysis indicate that the proposed method performs well in comparison with the other approaches.  相似文献   

11.
In this article, we consider a Bayesian analysis of a possible change in the parameters of autoregressive time series of known order p, AR(p). An unconditional Bayesian test based on highest posterior density (HPD) credible sets is determined. The test is useful to detect a change in any one of the parameters separately. Using the Gibbs sampler algorithm, we approximate the posterior densities of the change point and other parameters to calculate the p-values that define our test.  相似文献   

12.
Bridge penalized regression has many desirable statistical properties such as unbiasedness, sparseness as well as ‘oracle’. In Bayesian framework, bridge regularized penalty can be implemented based on generalized Gaussian distribution (GGD) prior. In this paper, we incorporate Bayesian bridge-randomized penalty and its adaptive version into the quantile regression (QR) models with autoregressive perturbations to conduct Bayesian penalization estimation. Employing the working likelihood of the asymmetric Laplace distribution (ALD) perturbations, the Bayesian joint hierarchical models are established. Based on the mixture representations of the ALD and generalized Gaussian distribution (GGD) priors of coefficients, the hybrid algorithms based on Gibbs sampler and Metropolis-Hasting sampler are provided to conduct fully Bayesian posterior estimation. Finally, the proposed Bayesian procedures are illustrated by some simulation examples and applied to a real data application of the electricity consumption.  相似文献   

13.
In this article, we develop a Bayesian analysis in autoregressive model with explanatory variables. When σ2 is known, we consider a normal prior and give the Bayesian estimator for the regression coefficients of the model. For the case σ2 is unknown, another Bayesian estimator is given for all unknown parameters under a conjugate prior. Bayesian model selection problem is also being considered under the double-exponential priors. By the convergence of ρ-mixing sequence, the consistency and asymptotic normality of the Bayesian estimators of the regression coefficients are proved. Simulation results indicate that our Bayesian estimators are not strongly dependent on the priors, and are robust.  相似文献   

14.

The paper proposes a Bayesian interpretation of quantile regression that is shown to be equivalent to scale mixtures of normals leading to a skewed Laplace distribution. This representation of the model facilitates Bayesian analysis by means of Gibbs sampling with data augmentation, and nests regression in the L1 norm as a special case. The new methods are applied to an analysis of the patents - R&D relationship for U.S. firms and unit root inference for the dollar-deutschemark exchange rate.  相似文献   

15.
Observations collected over time are often autocorrelated rather than independent, and sometimes include observations below or above detection limits (i.e. censored values reported as less or more than a level of detection) and/or missing data. Practitioners commonly disregard censored data cases or replace these observations with some function of the limit of detection, which often results in biased estimates. Moreover, parameter estimation can be greatly affected by the presence of influential observations in the data. In this paper we derive local influence diagnostic measures for censored regression models with autoregressive errors of order p (hereafter, AR(p)‐CR models) on the basis of the Q‐function under three useful perturbation schemes. In order to account for censoring in a likelihood‐based estimation procedure for AR(p)‐CR models, we used a stochastic approximation version of the expectation‐maximisation algorithm. The accuracy of the local influence diagnostic measure in detecting influential observations is explored through the analysis of empirical studies. The proposed methods are illustrated using data, from a study of total phosphorus concentration, that contain left‐censored observations. These methods are implemented in the R package ARCensReg.  相似文献   

16.
In this article, we apply the Bayesian approach to the linear mixed effect models with autoregressive(p) random errors under mixture priors obtained with the Markov chain Monte Carlo (MCMC) method. The mixture structure of a point mass and continuous distribution can help to select the variables in fixed and random effects models from the posterior sample generated using the MCMC method. Bayesian prediction of future observations is also one of the major concerns. To get the best model, we consider the commonly used highest posterior probability model and the median posterior probability model. As a result, both criteria tend to be needed to choose the best model from the entire simulation study. In terms of predictive accuracy, a real example confirms that the proposed method provides accurate results.  相似文献   

17.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

18.
A Bayesian approach is proposed for coefficient estimation in the Tobit quantile regression model. The proposed approach is based on placing a g-prior distribution depends on the quantile level on the regression coefficients. The prior is generalized by introducing a ridge parameter to address important challenges that may arise with censored data, such as multicollinearity and overfitting problems. Then, a stochastic search variable selection approach is proposed for Tobit quantile regression model based on g-prior. An expression for the hyperparameter g is proposed to calibrate the modified g-prior with a ridge parameter to the corresponding g-prior. Some possible extensions of the proposed approach are discussed, including the continuous and binary responses in quantile regression. The methods are illustrated using several simulation studies and a microarray study. The simulation studies and the microarray study indicate that the proposed approach performs well.  相似文献   

19.

In this paper we consider a Bayesian analysis for an autoregressive model with random normal coefficients (RCA). For the proposed procedure we use conjugate priors for some parameters and improper vague priors for others. The inference for the parameters is made via Gibbs sampler and the convergence is assessed with multiple chains and Gelman and Rubin criterium. Forecasts are based on the predictive density of future observations. Some remarks are also made regarding order determination and stationarity. Applications to simulated and real series are given.  相似文献   

20.
Based on the Bayesian framework of utilizing a Gaussian prior for the univariate nonparametric link function and an asymmetric Laplace distribution (ALD) for the residuals, we develop a Bayesian treatment for the Tobit quantile single-index regression model (TQSIM). With the location-scale mixture representation of the ALD, the posterior inferences of the latent variables and other parameters are achieved via the Markov Chain Monte Carlo computation method. TQSIM broadens the scope of applicability of the Tobit models by accommodating nonlinearity in the data. The proposed method is illustrated by two simulation examples and a labour supply dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号