首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the issue of generating correlated random vector containing discrete variables, one major obstacle is to determine a suitable correlation coefficient ρz in normal space for a specified correlation coefficient ρx. This paper develops a method to solve this problem. First, the double integral evaluated for ρx is transformed into independent standard uniform space, then, a Quasi Monte Carlo method is introduced to calculate the double integral. For a given ρx, an appropriate ρz is determined by a false position method. Compared with existing methodologies, the proposed method is less efficient, but it is relatively easy to implement.  相似文献   

2.
For given continuous distribution functions F(x) and G(y) and a Pearson correlation coefficient ρ, an algorithm is provided to construct a sequence of continuous bivariate distributions with marginals equal to F(x) and G(y) and the corresponding correlation coefficient converges to ρ. The algorithm can be easily implemented using S-Plus or R. Applications are given to generate bivariate random variables with marginals including Gamma, Beta, Weibull, and uniform distributions.  相似文献   

3.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

4.
The most popular method for trying to detect an association between two random variables is to test H 0 ?:?ρ=0, the hypothesis that Pearson's correlation is equal to zero. It is well known, however, that Pearson's correlation is not robust, roughly meaning that small changes in any distribution, including any bivariate normal distribution as a special case, can alter its value. Moreover, the usual estimate of ρ, r, is sensitive to only a few outliers which can mask a true association. A simple alternative to testing H 0 ?:?ρ =0 is to switch to a measure of association that guards against outliers among the marginal distributions such as Kendall's tau, Spearman's rho, a Winsorized correlation, or a so-called percentage bend correlation. But it is known that these methods fail to take into account the overall structure of the data. Many measures of association that do take into account the overall structure of the data have been proposed, but it seems that nothing is known about how they might be used to detect dependence. One such measure of association is selected, which is designed so that under bivariate normality, its estimator gives a reasonably accurate estimate of ρ. Then methods for testing the hypothesis of a zero correlation are studied.  相似文献   

5.
Abstarct. This paper is concerned with studying the dependence structure between two random variables Y 1 and Y 2 conditionally upon a covariate X. The dependence structure is modelled via a copula function, which depends on the given value of the covariate in a general way. Gijbels et al. (Comput. Statist. Data Anal., 55, 2011, 1919) suggested two non‐parametric estimators of the ‘conditional’ copula and investigated their numerical performances. In this paper we establish the asymptotic properties of the proposed estimators as well as conditional association measures derived from them. Practical recommendations for their use are then discussed.  相似文献   

6.
The correlation coefficient is widely used to quantify the degree of association between two quantitative variables. By resorting to the geometric representation of the linear correlation coefficient, it is possible to calculate the upper and lower bounds of the correlation coefficient between two variables x 1,x 2 when the correlation coefficients with a third variable x 3 are available. Implications in observational studies, where x 3 could be a proxy of a target variable x 2, whose direct measurement is too expensive or impractical, are discussed.  相似文献   

7.
This paper is concerned with studying the dependence structure between two random variables Y1 and Y2 in the presence of a covariate X, which affects both marginal distributions but not the dependence structure. This is reflected in the property that the conditional copula of Y1 and Y2 given X, does not depend on the value of X. This latter independence often appears as a simplifying assumption in pair‐copula constructions. We introduce a general estimator for the copula in this specific setting and establish its consistency. Moreover, we consider some special cases, such as parametric or nonparametric location‐scale models for the effect of the covariate X on the marginals of Y1 and Y2 and show that in these cases, weak convergence of the estimator, at ‐rate, holds. The theoretical results are illustrated by simulations and a real data example.  相似文献   

8.
R-squared (R2) and adjusted R-squared (R2Adj) are sometimes viewed as statistics detached from any target parameter, and sometimes as estimators for the population multiple correlation. The latter interpretation is meaningful only if the explanatory variables are random. This article proposes an alternative perspective for the case where the x’s are fixed. A new parameter is defined, in a similar fashion to the construction of R2, but relying on the true parameters rather than their estimates. (The parameter definition includes also the fixed x values.) This parameter is referred to as the “parametric” coefficient of determination, and denoted by ρ2*. The proposed ρ2* remains stable when irrelevant variables are removed (or added), unlike the unadjusted R2, which always goes up when variables, either relevant or not, are added to the model (and goes down when they are removed). The value of the traditional R2Adj may go up or down with added (or removed) variables, either relevant or not. It is shown that the unadjusted R2 overestimates ρ2*, while the traditional R2Adj underestimates it. It is also shown that for simple linear regression the magnitude of the bias of R2Adj can be as high as the bias of the unadjusted R2 (while their signs are opposite). Asymptotic convergence in probability of R2Adj to ρ2* is demonstrated. The effects of model parameters on the bias of R2 and R2Adj are characterized analytically and numerically. An alternative bi-adjusted estimator is presented and evaluated.  相似文献   

9.
We propose a methodology to analyse data arising from a curve that, over its domain, switches among J states. We consider a sequence of response variables, where each response y depends on a covariate x according to an unobserved state z. The states form a stochastic process and their possible values are j=1,?…?, J. If z equals j the expected response of y is one of J unknown smooth functions evaluated at x. We call this model a switching nonparametric regression model. We develop an Expectation–Maximisation algorithm to estimate the parameters of the latent state process and the functions corresponding to the J states. We also obtain standard errors for the parameter estimates of the state process. We conduct simulation studies to analyse the frequentist properties of our estimates. We also apply the proposed methodology to the well-known motorcycle dataset treating the data as coming from more than one simulated accident run with unobserved run labels.  相似文献   

10.
Two measures of dependence for multivariate t and Cauchy random variables are developed based on Kullback–Leibler number. The mutual information number T(X) is obtained in a closed expression form, as well as its asymptotic distribution. A dependence coefficient ρ1, is defined (based on the Kullback–Leibler number) with the properties of ρ1=0 indicating independence and ρ1=1indicating degeneracy. Two real life examples from the stock market are used to analyze the level of dependence and correlation among stocks.  相似文献   

11.
The probability density function (pdf) of a two parameter exponential distribution is given by f(x; p, s?) =s?-1 exp {-(x - ρ)/s?} for x≥ρ and 0 elsewhere, where 0 < ρ < ∞ and 0 < s?∞. Suppose we have k independent random samples where the ith sample is drawn from the ith population having the pdf f(x; ρi, s?i), 0 < ρi < ∞, 0 < s?i < s?i < and f(x; ρ, s?) is as given above. Let Xi1 < Xi2 <… < Xiri denote the first ri order statistics in a random sample of size ni, drawn from the ith population with pdf f(x; ρi, s?i), i = 1, 2,…, k. In this paper we show that the well known tests of hypotheses about the parameters ρi, s?i, i = 1, 2,…, k based on the above observations are asymptotically optimal in the sense of Bahadur efficiency. Our results are similar to those for normal distributions.  相似文献   

12.
LetX 1,X 2, … be a sequence of i.i.d. random variables with some continuous distribution functionF. LetX(n) be then-th record value associated with this sequence and μ n , μ n + be the variables that count the number of record values belonging to the random intervals(f−(X(n)), X(n)), (X(n), f+(X(n))), wheref−, f+ are two continuous functions satisfyingf−(x)<x, f+(x)>x. Properties of μ n , μ n + are studied in the present paper. Some statistical applications connected with these variables are also provided.  相似文献   

13.
The exact probability density function of a bivariate chi-square distribution with two correlated components is derived. Some moments of the product and ratio of two correlated chi-square random variables have been derived. The ratio of the two correlated chi-square variables is used to compare variability. One such application is referred to. Another application is pinpointed in connection with the distribution of correlation coefficient based on a bivariate t distribution.   相似文献   

14.
Let X1,…,Xn be exchangeable normal variables with a common correlation p, and let X(1) > … > X(n) denote their order statistics. The random variable σni=nk+1xi, called the selection differential by geneticists, is of particular interest in genetic selection and related areas. In this paper we give results concerning a conjecture of Tong (1982) on the distribution of this random variable as a function of ρ. The same technique used can be applied to yield more general results for linear combinations of order statistics from elliptical distributions.  相似文献   

15.
Nonparametric estimation of copula-based measures of multivariate association in a continuous random vector X=(X1, …, Xd) is usually based on complete continuous data. In many practical applications, however, these types of data are not readily available; instead aggregated ordinal observations are given, for example, ordinal ratings based on a latent continuous scale. This article introduces a purely nonparametric and data-driven estimator of the unknown copula density and the corresponding copula based on multivariate contingency tables. Estimators for multivariate Spearman's rho and Kendall's tau are based thereon. The properties of these estimators in samples of medium and large size are evaluated in a simulation study. An increasing bias can be observed along with an increasing degree of association between the components. As it is to be expected, the bias is severely influenced by the amount of information available. Additionally, the influence of sample size is only marginal. We further give an empirical illustration based on daily returns of five German stocks.  相似文献   

16.
Fosdick and Raftery (2012) recently encountered the problem of inference for a bivariate normal correlation coefficient ρ with known variances. We derive a variance-stabilizing transformation y(ρ) analogous to Fisher’s classical z-transformation for the unknown-variance case. Adjusting y for the sample size n produces an improved “confidence-stabilizing” transformation yn(ρ) that provides more accurate interval estimates for ρ than the known-variance MLE. Interestingly, the z transformation applied to the unknown-but-equal-variance MLE performs well in the known-variance case for smaller values of |ρ|. Both methods are useful for comparing two or more correlation coefficients in the known-variance case.  相似文献   

17.
18.
We derive best-possible bounds on the class of copulas with known values at several points, under the assumption that the points are either in “increasing order” or in “decreasing order”. These bounds may be used to establish best-possible bounds on Kendall's τ and Spearman's ρ, for such copulas. An important special case is when the values of a copula are known at several diagonal points. We also use our results to establish best-possible bounds on the distribution function of the sum of two random variables with known marginal distributions when the values of the joint distribution function are known at several points.  相似文献   

19.
In multiple regression and other settings one encounters the problem of estimating sampling distributions for contrast operations applied to i.i.d. errors. Permutation bootstrap applied to least squares residuals has been proven to consistently estimate conditionalsampling distributions of contrasts, conditional upon order statistics of errors, even for long-tailed error distributions. How does this compare with the unconditional sampling distribution of the contrast when standardizing by the sample s.d. of the errors (or the residuals)? For errors belonging to the domain of attraction of a normal we present a limit theorem proving that these distributions are far closer to one another than they are to the limiting standard normal distribution. For errors attracted to α-stable laws with α ≤ 2 we construct random variables possessing these conditional and unconditional sampling distributions and develop a Poisson representation for their a.s. limit correlation ρα. We prove that ρ2= 1, ρα→ 1 for α → 0 + or 2 ?, and ρα< 1 a.s. for α < 2.  相似文献   

20.
Let {X j , j ≥ 1} be a strictly stationary negatively or positively associated sequence of real valued random variables with unknown distribution function F(x). On the basis of the random variables {X j , j ≥ 1}, we propose a smooth recursive kernel-type estimate of F(x), and study asymptotic bias, quadratic-mean consistency and asymptotic normality of the recursive kernel-type estimator under suitable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号