首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes a statistical method for estimating data envelopment analysis (DEA) score confidence intervals for individual organizations or other entities. This method applies statistical panel data analysis, which provides proven and powerful methodologies for diagnostic testing and for estimation of confidence intervals. DEA scores are tested for violations of the standard statistical assumptions including contemporaneous correlation, serial correlation, heteroskedasticity and the absence of a normal distribution. Generalized least squares statistical models are used to adjust for violations that are present and to estimate valid confidence intervals within which the true efficiency of each individual decision-making unit occurs. This method is illustrated with two sets of panel data, one from large US urban transit systems and the other from a group of US hospital pharmacies.  相似文献   

2.
In this paper we consider the problems of estimation and prediction when observed data from a lognormal distribution are based on lower record values and lower record values with inter-record times. We compute maximum likelihood estimates and asymptotic confidence intervals for model parameters. We also obtain Bayes estimates and the highest posterior density (HPD) intervals using noninformative and informative priors under square error and LINEX loss functions. Furthermore, for the problem of Bayesian prediction under one-sample and two-sample framework, we obtain predictive estimates and the associated predictive equal-tail and HPD intervals. Finally for illustration purpose a real data set is analyzed and simulation study is conducted to compare the methods of estimation and prediction.  相似文献   

3.
We consider the prediction of new observations in a general Gauss–Markov model. We state the fundamental equations of the best linear unbiased prediction, BLUP, and consider some properties of the BLUP. Particularly, we focus on such linear statistics, which preserve enough information for obtaining the BLUP of new observations as a linear function of them. We call such statistics linearly prediction sufficient for new observations, and introduce some equivalent characterizations for this new concept.  相似文献   

4.
This paper considers the problem of simultaneously predicting/estimating unknown parameter spaces in a linear random-effects model with both parameter restrictions and missing observations. We shall establish explicit formulas for calculating the best linear unbiased predictors (BLUPs) of all unknown parameters in such a model, and derive a variety of mathematical and statistical properties of the BLUPs under general assumptions. We also discuss some matrix expressions related to the covariance matrix of the BLUP, and present various necessary and sufficient conditions for several equalities and inequalities of the covariance matrix of the BLUP to hold.  相似文献   

5.
The Modulated Power Law process has been recently proposed as a suitable model for describing the failure pattern of repairable systems when both renewal-type behaviour and time trend are present. Unfortunately, the maximum likelihood method provides neither accurate confidence intervals on the model parameters for small or moderate sample sizes nor predictive intervals on future observations.

This paper proposes a Bayes approach, based on both non-informative and vague prior, as an alternative to the classical method. Point and interval estimation of the parameters, as well as point and interval prediction of future failure times, are given. Monte Carlo simulation studies show that the Bayes estimation and prediction possess good statistical properties in a frequentist context and, thus, are a valid alternative to the maximum likelihood approach.

Numerical examples illustrate the estimation and prediction procedures.  相似文献   

6.
Leave-one-out and 632 bootstrap are popular data-based methods of estimating the true error rate of a classification rule, but practical applications almost exclusively quote only point estimates. Interval estimation would provide better assessment of the future performance of the rule, but little has been published on this topic. We first review general-purpose jackknife and bootstrap methodology that can be used in conjunction with leave-one-out estimates to provide prediction intervals for true error rates of classification rules. Monte Carlo simulation is then used to investigate coverage rates of the resulting intervals for normal data, but the results are disappointing; standard intervals show considerable overinclusion, intervals based on Edgeworth approximations or random weighting do not perform well, and while a bootstrap approach provides intervals with coverage rates closer to the nominal ones there is still marked underinclusion. We then turn to intervals constructed from 632 bootstrap estimates, and show that much better results are obtained. Although there is now some overinclusion, particularly for large training samples, the actual coverage rates are sufficiently close to the nominal rates for the method to be recommended. An application to real data illustrates the considerable variability that can arise in practical estimation of error rates.  相似文献   

7.
We develop both nonparametric and parametric methods for obtaining prediction bands for the empirical distribution function (EDF) of a future sample. These methods yield simultaneous prediction intervals for all order statistics of the future sample, and they also correspond to tests for the two-sample problem. The nonparametric prediction bands correspond to the two-sample Kolmogorov-Smirnov test and related nonparametric tests, but the parametric prediction bands correspond to entirely new parametric two-sample tests. The parametric prediction bands tend to outperform the nonparametric bands when the parametric assumptions hold, but they may have true coverage probabilities well below their nominal levels when the parametric assumptions fail. A new computational algorithm is used to obtain critical values in the nonparametric case.  相似文献   

8.
Introducing model uncertainty by moving blocks bootstrap   总被引:1,自引:1,他引:0  
It is common in parametric bootstrap to select the model from the data, and then treat as if it were the true model. Chatfield (1993, 1996) has shown that ignoring the model uncertainty may seriously undermine the coverage accuracy of prediction intervals. In this paper, we propose a method based on moving block bootstrap for introducing the model selection step in the resampling algorithm. We present a Monte Carlo study comparing the finite sample properties of the proposel method with those of alternative methods in the case of prediction intervas.  相似文献   

9.
In this paper we consider estimation of unknown parameters of an inverted exponentiated Rayleigh distribution when it is known that data are hybrid Type I censored. The maximum likelihood and Bayes estimates are derived. In sequel interval estimates are also constructed. We further consider one- and two-sample prediction of future observations and also obtain prediction intervals. The performance of proposed methods of estimation and prediction is studied using simulations and an illustrative example is discussed in support of the suggested methods.  相似文献   

10.
Nearest Neighbor Adjusted Best Linear Unbiased Prediction   总被引:1,自引:0,他引:1  
Statistical inference for linear models has classically focused on either estimation or hypothesis testing of linear combinations of fixed effects or of variance components for random effects. A third form of inference—prediction of linear combinations of fixed and random effects—has important advantages over conventional estimators in many applications. None of these approaches will result in accurate inference if the data contain strong, unaccounted for local gradients, such as spatial trends in field-plot data. Nearest neighbor methods to adjust for such trends have been widely discussed in recent literature. So far, however, these methods have been developed exclusively for classical estimation and hypothesis testing. In this article a method of obtaining nearest neighbor adjusted (NNA) predictors, along the lines of “best linear unbiased prediction,” or BLUP, is developed. A simulation study comparing “NNABLUP” to conventional NNA methods and to non-NNA alternatives suggests considerable potential for improved efficiency.  相似文献   

11.
In this study, we investigate the concept of the mean response for a treatment group mean as well as its estimation and prediction for generalized linear models with a subject‐wise random effect. Generalized linear models are commonly used to analyze categorical data. The model‐based mean for a treatment group usually estimates the response at the mean covariate. However, the mean response for the treatment group for studied population is at least equally important in the context of clinical trials. New methods were proposed to estimate such a mean response in generalized linear models; however, this has only been done when there are no random effects in the model. We suggest that, in a generalized linear mixed model (GLMM), there are at least two possible definitions of a treatment group mean response that can serve as estimation/prediction targets. The estimation of these treatment group means is important for healthcare professionals to be able to understand the absolute benefit vs risk. For both of these treatment group means, we propose a new set of methods that suggests how to estimate/predict both of them in a GLMMs with a univariate subject‐wise random effect. Our methods also suggest an easy way of constructing corresponding confidence and prediction intervals for both possible treatment group means. Simulations show that proposed confidence and prediction intervals provide correct empirical coverage probability under most circumstances. Proposed methods have also been applied to analyze hypoglycemia data from diabetes clinical trials.  相似文献   

12.
The most common forecasting methods in business are based on exponential smoothing, and the most common time series in business are inherently non‐negative. Therefore it is of interest to consider the properties of the potential stochastic models underlying exponential smoothing when applied to non‐negative data. We explore exponential smoothing state space models for non‐negative data under various assumptions about the innovations, or error, process. We first demonstrate that prediction distributions from some commonly used state space models may have an infinite variance beyond a certain forecasting horizon. For multiplicative error models that do not have this flaw, we show that sample paths will converge almost surely to zero even when the error distribution is non‐Gaussian. We propose a new model with similar properties to exponential smoothing, but which does not have these problems, and we develop some distributional properties for our new model. We then explore the implications of our results for inference, and compare the short‐term forecasting performance of the various models using data on the weekly sales of over 300 items of costume jewelry. The main findings of the research are that the Gaussian approximation is adequate for estimation and one‐step‐ahead forecasting. However, as the forecasting horizon increases, the approximate prediction intervals become increasingly problematic. When the model is to be used for simulation purposes, a suitably specified scheme must be employed.  相似文献   

13.
Optimal prediction problems in finite population are investigated. Under matrix loss, we provide necessary and sufficient conditions for the linear predictor of a general linearly predictable variable to be the best linear unbiased predictor (BLUP). The essentially unique BLUP of a linearly predictable variable is obtained in the general superpopulation model. Surprisingly, the both BLUPs under matrix and quadratic loss functions are equivalent to each other. Next, we prove that the BLUP is admissible in the class of linear predictors. Conditions for optimality of the simple projection predictor (SPP) are given. Furthermore, the robust SPP and the robust BLUP are characterized on the misspecification of the covariance matrix.  相似文献   

14.
In this paper we introduce a procedure to compute prediction intervals for FARIMA (p d q) processes, taking into account the variability due to model identification and parameter estimation. To this aim, a particular bootstrap technique is developed. The performance of the prediction intervals is then assessed and compared to that of stand­ard bootstrap percentile intervals. The methods are applied to the time series of Nile River annual minima.  相似文献   

15.
Unit-level regression models are commonly used in small area estimation (SAE) to obtain an empirical best linear unbiased prediction of small area characteristics. The underlying assumptions of these models, however, may be unrealistic in some applications. Previous work developed a copula-based SAE model where the empirical Kendall's tau was used to estimate the dependence between two units from the same area. In this article, we propose a likelihood framework to estimate the intra-class dependence of the multivariate exchangeable copula for the empirical best unbiased prediction (EBUP) of small area means. One appeal of the proposed approach lies in its accommodation of both parametric and semi-parametric estimation approaches. Under each estimation method, we further propose a bootstrap approach to obtain a nearly unbiased estimator of the mean squared prediction error of the EBUP of small area means. The performance of the proposed methods is evaluated through simulation studies and also by a real data application.  相似文献   

16.
Razzaghi (1987) conjectured that a wrong choice of covariance matrix in a restricted linear model results in loss of efficiency. This conjecture was proved correct by Kabe and Gupta for a wrong choice of constant covariance matrix. The present paper demonstrates that this loss of efficiency persists even with an estimated covariance matrix, thereby resulting in inefficient estimation, prediction, and confidence intervals.  相似文献   

17.
This paper discusses method for constructing the prediction intervals for time series model with trend using the sieve bootstrap procedure. Gasser–Müller type of kernel estimator is used for trend estimation and prediction. The boundary modification of the kernel is applied to control the edge effect and to construct the predictor of a trend.  相似文献   

18.
ABSTRACT

This paper proposes an adaptive quasi-maximum likelihood estimation (QMLE) when forecasting the volatility of financial data with the generalized autoregressive conditional heteroscedasticity (GARCH) model. When the distribution of volatility data is unspecified or heavy-tailed, we worked out adaptive QMLE based on data by using the scale parameter ηf to identify the discrepancy between wrongly specified innovation density and the true innovation density. With only a few assumptions, this adaptive approach is consistent and asymptotically normal. Moreover, it gains better efficiency under the condition that innovation error is heavy-tailed. Finally, simulation studies and an application show its advantage.  相似文献   

19.
Focusing on the model selection problems in the family of Poisson mixture models (including the Poisson mixture regression model with random effects and zero‐inflated Poisson regression model with random effects), the current paper derives two conditional Akaike information criteria. The criteria are the unbiased estimators of the conditional Akaike information based on the conditional log‐likelihood and the conditional Akaike information based on the joint log‐likelihood, respectively. The derivation is free from the specific parametric assumptions about the conditional mean of the true data‐generating model and applies to different types of estimation methods. Additionally, the derivation is not based on the asymptotic argument. Simulations show that the proposed criteria have promising estimation accuracy. In addition, it is found that the criterion based on the conditional log‐likelihood demonstrates good model selection performance under different scenarios. Two sets of real data are used to illustrate the proposed method.  相似文献   

20.
The generalized half-normal (GHN) distribution and progressive type-II censoring are considered in this article for studying some statistical inferences of constant-stress accelerated life testing. The EM algorithm is considered to calculate the maximum likelihood estimates. Fisher information matrix is formed depending on the missing information law and it is utilized for structuring the asymptomatic confidence intervals. Further, interval estimation is discussed through bootstrap intervals. The Tierney and Kadane method, importance sampling procedure and Metropolis-Hastings algorithm are utilized to compute Bayesian estimates. Furthermore, predictive estimates for censored data and the related prediction intervals are obtained. We consider three optimality criteria to find out the optimal stress level. A real data set is used to illustrate the importance of GHN distribution as an alternative lifetime model for well-known distributions. Finally, a simulation study is provided with discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号