共查询到20条相似文献,搜索用时 15 毫秒
1.
Yi-Fu Wang Tsai-Hung Fan 《Journal of statistical planning and inference》2011,141(6):2071-2078
Structural equation models (SEM) have been extensively used in behavioral, social, and psychological research to model relations between the latent variables and the observations. Most software packages for the fitting of SEM rely on frequentist methods. Traditional models and software are not appropriate for analysis of the dependent observations such as time-series data. In this study, a structural equation model with a time series feature is introduced. A Bayesian approach is used to solve the model with the aid of the Markov chain Monte Carlo method. Bayesian inferences as well as prediction with the proposed time series structural equation model can also reveal certain unobserved relationships among the observations. The approach is successfully employed using real Asian, American and European stock return data. 相似文献
2.
In proteomics, identification of proteins from complex mixtures of proteins extracted from biological samples is an important problem. Among the experimental technologies, mass spectrometry (MS) is the most popular one. Protein identification from MS data typically relies on a ‘two-step’ procedure of identifying the peptide first followed by the separate protein identification procedure next. In this setup, the interdependence of peptides and proteins is neglected resulting in relatively inaccurate protein identification. In this article, we propose a Markov chain Monte Carlo based Bayesian hierarchical model, a first of its kind in protein identification, which integrates the two steps and performs joint analysis of proteins and peptides using posterior probabilities. We remove the assumption of independence of proteins by using clustering group priors to the proteins based on the assumption that proteins sharing the same biological pathway are likely to be present or absent together and are correlated. The complete conditionals of the proposed joint model being tractable, we propose and implement a Gibbs sampling scheme for full posterior inference that provides the estimation and statistical uncertainties of all relevant parameters. The model has better operational characteristics compared to two existing ‘one-step’ procedures on a range of simulation settings as well as on two well-studied datasets. 相似文献
3.
Enrique de Alba 《商业与经济统计学杂志》2013,31(2):197-206
The problem of temporal disaggregation of time series is analyzed by means of Bayesian methods. The disaggregated values are obtained through a posterior distribution derived by using a diffuse prior on the parameters. Further analysis is carried out assuming alternative conjugate priors. The means of the different posterior distributions are shown to be equivalent to some sampling theory results. Bayesian prediction intervals are obtained. Forecasts for future disaggregated values are derived assuming a conjugate prior for the future aggregated value. 相似文献
4.
We consider a Bayesian nonignorable model to accommodate a nonignorable selection mechanism for predicting small area proportions. Our main objective is to extend a model on selection bias in a previously published paper, coauthored by four authors, to accommodate small areas. These authors assume that the survey weights (or their reciprocals that we also call selection probabilities) are available, but there is no simple relation between the binary responses and the selection probabilities. To capture the nonignorable selection bias within each area, they assume that the binary responses and the selection probabilities are correlated. To accommodate the small areas, we extend their model to a hierarchical Bayesian nonignorable model and we use Markov chain Monte Carlo methods to fit it. We illustrate our methodology using a numerical example obtained from data on activity limitation in the U.S. National Health Interview Survey. We also perform a simulation study to assess the effect of the correlation between the binary responses and the selection probabilities. 相似文献
5.
Merrilee Hurn Peter J. Green Fahimah Al-Awadhi 《Journal of the Royal Statistical Society. Series C, Applied statistics》2008,57(4):487-504
Summary. The Sloan digital sky survey is an extremely large astronomical survey that is conducted with the intention of mapping more than a quarter of the sky. Among the data that it is generating are spectroscopic and photometric measurements, both containing information about the red shift of galaxies. The former are precise and easy to interpret but expensive to gather; the latter are far cheaper but correspondingly more difficult to interpret. Recently, Csabai and co-workers have described various calibration techniques aiming to predict red shift from photometric measurements. We investigate what a structured Bayesian approach to the problem can add. In particular, we are interested in providing uncertainty bounds that are associated with the underlying red shifts and the classifications of the galaxies. We find that quite a generic statistical modelling approach, using for the most part standard model ingredients, can compete with much more specific custom-made and highly tuned techniques that are already available in the astronomical literature. 相似文献
6.
It is well recognized that the generalized extreme value (GEV) distribution is widely used for any extreme events. This notion is based on the study of discrete choice behavior; however, there is a limit for predicting the distribution at ungauged sites. Hence, there have been studies on spatial dependence within extreme events in continuous space using recorded observations. We model the annual maximum daily rainfall data consisting of 25 locations for the period from 1982 to 2013. The spatial GEV model that is established under observations is assumed to be mutually independent because there is no spatial dependency between the stations. Furthermore, we divide the region into two regions for a better model fit and identify the best model for each region. We show that the regional spatial GEV model reflects the spatial pattern well compared with the spatial GEV model over the entire region as the local GEV distribution. The advantage of spatial extreme modeling is that more robust return levels and some indices of extreme rainfall can be obtained for observed stations as well as for locations without observed data. Thus, the model helps to determine the effects and assessment of vulnerability due to heavy rainfall in northeast Thailand. 相似文献
7.
A hierarchical Bayesian model for predicting the functional consequences of amino-acid polymorphisms
Claudio J. Verzilli John C. Whittaker Nigel Stallard Daniel Chasman 《Journal of the Royal Statistical Society. Series C, Applied statistics》2005,54(1):191-206
Summary. Genetic polymorphisms in deoxyribonucleic acid coding regions may have a phenotypic effect on the carrier, e.g. by influencing susceptibility to disease. Detection of deleterious mutations via association studies is hampered by the large number of candidate sites; therefore methods are needed to narrow down the search to the most promising sites. For this, a possible approach is to use structural and sequence-based information of the encoded protein to predict whether a mutation at a particular site is likely to disrupt the functionality of the protein itself. We propose a hierarchical Bayesian multivariate adaptive regression spline (BMARS) model for supervised learning in this context and assess its predictive performance by using data from mutagenesis experiments on lac repressor and lysozyme proteins. In these experiments, about 12 amino-acid substitutions were performed at each native amino-acid position and the effect on protein functionality was assessed. The training data thus consist of repeated observations at each position, which the hierarchical framework is needed to account for. The model is trained on the lac repressor data and tested on the lysozyme mutations and vice versa. In particular, we show that the hierarchical BMARS model, by allowing for the clustered nature of the data, yields lower out-of-sample misclassification rates compared with both a BMARS and a frequen-tist MARS model, a support vector machine classifier and an optimally pruned classification tree. 相似文献
8.
Riten Mitra Peter Müller Yuan Ji Yitan Zhu Gordon Mills Yiling Lu 《Journal of applied statistics》2014,41(11):2483-2492
We consider inference for functional proteomics experiments that record protein activation over time following perturbation under different dose levels of several drugs. The main inference goal is the dependence structure of the selected proteins. A critical challenge is the lack of sufficient data under any one drug and dose level to allow meaningful inference on dependence structure. We propose a hierarchical model to implement the desired inference. The key element of the model is a shared dependence structure on (latent) binary indicators of protein activation. 相似文献
9.
The problem of modelling football data has become increasingly popular in the last few years and many different models have been proposed with the aim of estimating the characteristics that bring a team to lose or win a game, or to predict the score of a particular match. We propose a Bayesian hierarchical model to fulfil both these aims and test its predictive strength based on data about the Italian Serie A 1991–1992 championship. To overcome the issue of overshrinkage produced by the Bayesian hierarchical model, we specify a more complex mixture model that results in a better fit to the observed data. We test its performance using an example of the Italian Serie A 2007–2008 championship. 相似文献
10.
Gary K. Grunwald Kais Hamza & Rob J. Hyndman 《Journal of the Royal Statistical Society. Series B, Statistical methodology》1997,59(3):615-626
We study the most basic Bayesian forecasting model for exponential family time series, the power steady model (PSM) of Smith, in terms of observable properties of one-step forecast distributions and sample paths. The PSM implies a constraint between location and spread of the forecast distribution. Including a scale parameter in the models does not always give an exact solution free of this problem, but it does suggest how to define related models free of the constraint. We define such a class of models which contains the PSM. We concentrate on the case where observations are non-negative. Probability theory and simulation show that under very mild conditions almost all sample paths of these models converge to some constant, making them unsuitable for modelling in many situations. The results apply more generally to non-negative models defined in terms of exponentially weighted moving averages. We use these and related results to motivate, define and apply very simple models based on directly specifying the forecast distributions. 相似文献
11.
This article reviews Bayesian inference from the perspective that the designated model is misspecified. This misspecification has implications in interpretation of objects, such as the prior distribution, which has been the cause of recent questioning of the appropriateness of Bayesian inference in this scenario. The main focus of this article is to establish the suitability of applying the Bayes update to a misspecified model, and relies on representation theorems for sequences of symmetric distributions; the identification of parameter values of interest; and the construction of sequences of distributions which act as the guesses as to where the next observation is coming from. A conclusion is that a clear identification of the fundamental starting point for the Bayesian is described. 相似文献
12.
Younan Chen 《Journal of applied statistics》2011,38(9):1963-1975
In modern quality engineering, dual response surface methodology is a powerful tool to model an industrial process by using both the mean and the standard deviation of the measurements as the responses. The least squares method in regression is often used to estimate the coefficients in the mean and standard deviation models, and various decision criteria are proposed by researchers to find the optimal conditions. Based on the inherent hierarchical structure of the dual response problems, we propose a Bayesian hierarchical approach to model dual response surfaces. Such an approach is compared with two frequentist least squares methods by using two real data sets and simulated data. 相似文献
13.
This paper develops a new Bayesian approach to change-point modeling that allows the number of change-points in the observed autocorrelated times series to be unknown. The model we develop assumes that the number of change-points have a truncated Poisson distribution. A genetic algorithm is used to estimate a change-point model, which allows for structural changes with autocorrelated errors. We focus considerable attention on the construction of autocorrelated structure for each regime and for the parameters that characterize each regime. Our techniques are found to work well in the simulation with a few change-points. An empirical analysis is provided involving the annual flow of the Nile River and the monthly total energy production in South Korea to lead good estimates for structural change-points. 相似文献
14.
Mohammad Samsul Alam Syed Shahadat Hossain Farha Ferdous Sheela 《Journal of applied statistics》2019,46(10):1870-1885
The term low birth weight refers an event where a newborn baby has a weight that is less than 2500?g. This is an essential indicator while the interest is in public health issues such as infant mortality, maternal complications, and antenatal care, etc. of a country, particularly, for a developing country like Bangladesh. The regional development programs are in the current priority list of Bangladesh government and other policy makers. Many of such regional development programs may need the spatial distribution of relative risk for low birth weight that can be obtained by mapping the risks over small area domains like the districts of Bangladesh. This study aims to find whether is there any spatial dependence among the relative risks of low birth weight for the districts of Bangladesh. This has been investigated using Moran's I statistic and a significant spatial dependence in the relative risks was found. Then, attempt has been made to rediscover the spatial distribution based on the idea of spatial smoothing. A Bayesian hierarchical model is used considering percent received antenatal care and female labor force participation as covariates to smooth the observed relative risks of low birth weight in 64 districts of Bangladesh. Revised spatial distribution taking the spatial dependence under consideration through intrinsic conditional autoregressive model is derived and showed in choropleth map along with its different behaviors. 相似文献
15.
Eder Angelo Milani Marcelo Hartmann Marinho G. Andrade Carlos Alberto Ribeiro Diniz 《统计学通讯:模拟与计算》2013,42(9):2743-2756
AbstractIn this article, we propose a new model for binary time series involving an autoregressive moving average structure. The proposed model, which is an extension of the GARMA model, can be used for calculating the forecast probability of an occurrence of an event of interest in cases where these probabilities are dependent on previous observations in the near term. The proposed model is used to analyze a real dataset involving a series that contains only data 0 and 1, indicating the absence or presence of rain in a city located in the central region of São Paulo state, Brazil. 相似文献
16.
This paper considers a hierarchical Bayesian analysis of regression models using a class of Gaussian scale mixtures. This class provides a robust alternative to the common use of the Gaussian distribution as a prior distribution in particular for estimating the regression function subject to uncertainty about the constraint. For this purpose, we use a family of rectangular screened multivariate scale mixtures of Gaussian distribution as a prior for the regression function, which is flexible enough to reflect the degrees of uncertainty about the functional constraint. Specifically, we propose a hierarchical Bayesian regression model for the constrained regression function with uncertainty on the basis of three stages of a prior hierarchy with Gaussian scale mixtures, referred to as a hierarchical screened scale mixture of Gaussian regression models (HSMGRM). We describe distributional properties of HSMGRM and an efficient Markov chain Monte Carlo algorithm for posterior inference, and apply the proposed model to real applications with constrained regression models subject to uncertainty. 相似文献
17.
David Hirst Sondre Aanes Geir Storvik Ragnar Bang Huseby Ingunn Fride Tvete 《Journal of the Royal Statistical Society. Series C, Applied statistics》2004,53(1):1-14
Summary. The paper develops a Bayesian hierarchical model for estimating the catch at age of cod landed in Norway. The model includes covariate effects such as season and gear, and can also account for the within-boat correlation. The hierarchical structure allows us to account properly for the uncertainty in the estimates. 相似文献
18.
ABSTRACTThe paper provides a Bayesian analysis for the zero-inflated regression models based on the generalized power series distribution. The approach is based on Markov chain Monte Carlo methods. The residual analysis is discussed and case-deletion influence diagnostics are developed for the joint posterior distribution, based on the ψ-divergence, which includes several divergence measures such as the Kullback–Leibler, J-distance, L1 norm, and χ2-square in zero-inflated general power series models. The methodology is reflected in a data set collected by wildlife biologists in a state park in California. 相似文献
19.
Bayesian neural networks for nonlinear time series forecasting 总被引:3,自引:0,他引:3
In this article, we apply Bayesian neural networks (BNNs) to time series analysis, and propose a Monte Carlo algorithm for BNN training. In addition, we go a step further in BNN model selection by putting a prior on network connections instead of hidden units as done by other authors. This allows us to treat the selection of hidden units and the selection of input variables uniformly. The BNN model is compared to a number of competitors, such as the Box-Jenkins model, bilinear model, threshold autoregressive model, and traditional neural network model, on a number of popular and challenging data sets. Numerical results show that the BNN model has achieved a consistent improvement over the competitors in forecasting future values. Insights on how to improve the generalization ability of BNNs are revealed in many respects of our implementation, such as the selection of input variables, the specification of prior distributions, and the treatment of outliers. 相似文献
20.
A hierarchical model for extreme wind speeds 总被引:3,自引:0,他引:3
Lee Fawcett David Walshaw 《Journal of the Royal Statistical Society. Series C, Applied statistics》2006,55(5):631-646
Summary. A typical extreme value analysis is often carried out on the basis of simplistic inferential procedures, though the data being analysed may be structurally complex. Here we develop a hierarchical model for hourly gust maximum wind speed data, which attempts to identify site and seasonal effects for the marginal densities of hourly maxima, as well as for the serial dependence at each location. A Gaussian model for the random effects exploits the meteorological structure in the data, enabling increased precision for inferences at individual sites and in individual seasons. The Bayesian framework that is adopted is also exploited to obtain predictive return level estimates at each site, which incorporate uncertainty due to model estimation, as well as the randomness that is inherent in the processes that are involved. 相似文献