首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study partial linear single-index models (PLSiMs) when the response and the covariates in the parametric part are measured with additive distortion measurement errors. These distortions are modeled by unknown functions of a commonly observable confounding variable. We use the semiparametric profile least-squares method to estimate the parameters in the PLSiMs based on the residuals obtained from the distorted variables and confounding variable. We also employ the smoothly clipped absolute deviation penalty (SCAD) to select the relevant variables in the PLSiMs. We show that the resulting SCAD estimators are consistent and possess the oracle property. For the non parametric link function, we construct the simultaneous confidence bands and obtain the asymptotic distribution of the maximum absolute deviation between the estimated link function and the true link function. A simulation study is conducted to evaluate the performance of the proposed methods and a real dataset is analyzed for illustration.  相似文献   

2.
In this paper, we propose a new varying coefficient partially nonlinear model where both the response and predictors are not directly observed, but are observed by unknown distorting functions of a commonly observable covariate. Because of the complexity of the model, existing estimation methods cannot be directly employed. For this, we propose using an efficient nonparametric regression to estimate the unknown distortion functions concerning the covariates and response on the distorting variable, and further, we obtain the profile nonlinear least squares estimators for the parameters and the coefficient functions using the calibrated variables. Furthermore, we establish the asymptotic properties of the resulting estimators. To illustrate our proposed methodology, we carry out some simulated and real examples.  相似文献   

3.
Qunfang Xu 《Statistics》2017,51(6):1280-1303
In this paper, semiparametric modelling for longitudinal data with an unstructured error process is considered. We propose a partially linear additive regression model for longitudinal data in which within-subject variances and covariances of the error process are described by unknown univariate and bivariate functions, respectively. We provide an estimating approach in which polynomial splines are used to approximate the additive nonparametric components and the within-subject variance and covariance functions are estimated nonparametrically. Both the asymptotic normality of the resulting parametric component estimators and optimal convergence rate of the resulting nonparametric component estimators are established. In addition, we develop a variable selection procedure to identify significant parametric and nonparametric components simultaneously. We show that the proposed SCAD penalty-based estimators of non-zero components have an oracle property. Some simulation studies are conducted to examine the finite-sample performance of the proposed estimation and variable selection procedures. A real data set is also analysed to demonstrate the usefulness of the proposed method.  相似文献   

4.
We study the quantile estimation methods for the distortion measurement error data when variables are unobserved and distorted with additive errors by some unknown functions of an observable confounding variable. After calibrating the error-prone variables, we propose the quantile regression estimation procedure and composite quantile estimation procedure. Asymptotic properties of the proposed estimators are established, and we also investigate the asymptotic relative efficiency compared with the least-squares estimator. Simulation studies are conducted to evaluate the performance of the proposed methods, and a real dataset is analyzed as an illustration.  相似文献   

5.
In this paper, we consider the estimation problem of multiple conditional quantile functions with right censored survival data. To account for censoring in estimating a quantile function, weighted quantile regression (WQR) has been developed by using inverse-censoring-probability weights. However, the estimated quantile functions from the WQR often cross each other and consequently violate the basic properties of quantiles. To avoid quantile crossing, we propose non-crossing weighted multiple quantile regression (NWQR), which estimates multiple conditional quantile functions simultaneously. We further propose the adaptive sup-norm regularized NWQR (ANWQR) to perform simultaneous estimation and variable selection. The large sample properties of the NWQR and ANWQR estimators are established under certain regularity conditions. The proposed methods are evaluated through simulation studies and analysis of a real data set.  相似文献   

6.
Common loss functions used for the restoration of grey scale images include the zero–one loss and the sum of squared errors. The corresponding estimators, the posterior mode and the posterior marginal mean, are optimal Bayes estimators with respect to their way of measuring the loss for different error configurations. However, both these loss functions have a fundamental weakness: the loss does not depend on the spatial structure of the errors. This is important because a systematic structure in the errors can lead to misinterpretation of the estimated image. We propose a new loss function that also penalizes strong local sample covariance in the error and we discuss how the optimal Bayes estimator can be estimated using a two-step Markov chain Monte Carlo and simulated annealing algorithm. We present simulation results for some artificial data which show improvement with respect to small structures in the image.  相似文献   

7.
Additive models provide an attractive setup to estimate regression functions in a nonparametric context. They provide a flexible and interpretable model, where each regression function depends only on a single explanatory variable and can be estimated at an optimal univariate rate. Most estimation procedures for these models are highly sensitive to the presence of even a small proportion of outliers in the data. In this paper, we show that a relatively simple robust version of the backfitting algorithm (consisting of using robust local polynomial smoothers) corresponds to the solution of a well-defined optimisation problem. This formulation allows us to find mild conditions to show Fisher consistency and to study the convergence of the algorithm. Our numerical experiments show that the resulting estimators have good robustness and efficiency properties. We illustrate the use of these estimators on a real data set where the robust fit reveals the presence of influential outliers.  相似文献   

8.
Functional linear models are useful in longitudinal data analysis. They include many classical and recently proposed statistical models for longitudinal data and other functional data. Recently, smoothing spline and kernel methods have been proposed for estimating their coefficient functions nonparametrically but these methods are either intensive in computation or inefficient in performance. To overcome these drawbacks, in this paper, a simple and powerful two-step alternative is proposed. In particular, the implementation of the proposed approach via local polynomial smoothing is discussed. Methods for estimating standard deviations of estimated coefficient functions are also proposed. Some asymptotic results for the local polynomial estimators are established. Two longitudinal data sets, one of which involves time-dependent covariates, are used to demonstrate the approach proposed. Simulation studies show that our two-step approach improves the kernel method proposed by Hoover and co-workers in several aspects such as accuracy, computational time and visual appeal of the estimators.  相似文献   

9.
In this paper, we propose several dimension reduction methods when the covariates are measured with additive distortion measurement errors. These distortions are modelled by unknown functions of a commonly observable confounding variable. To estimate the central subspace, we propose residuals-based dimension reduction estimation methods and direct estimation methods. The consistency and asymptotic normality of the proposed estimators are investigated. Furthermore, we conduct some simulations to evaluate the performance of our proposed method and compare with existing methods, and a real data set is analysed for illustration.  相似文献   

10.
Lu Lin  Yongxin Liu 《Statistics》2017,51(4):745-765
We consider a partially piecewise regression in which the main regression coefficients are constant in all subdomains, but the extraessential regression function is variable in different pieces and is difficult to be estimated. Under this situation, two new regression methodologies are proposed under the criteria of mini-max-risk and mini-mean-risk. The resulting models can describe the regression relations in maximum-risk and mean-risk environments, respectively. A two-stage estimation procedure, together with a composite method, is introduced. The asymptotic normality of the estimators is established, the standard convergence rate and efficiency are achieved. Some unusual features of the new estimators and predictions, and the related variable selection are discussed for a comprehensive comparison. Simulation studies and a real-financial example are given to illustrate the new methodologies.  相似文献   

11.
For survival data, mark variables are only observed at uncensored failure times, and it is of interest to investigate whether there is any relationship between the failure time and the mark variable. The additive hazards model, focusing on hazard differences rather than hazard ratios, has been widely used in practice. In this article, we propose a mark-specific additive hazards model in which both the regression coefficient functions and the baseline hazard function depend nonparametrically on a continuous mark. An estimating equation approach is developed to estimate the regression functions, and the asymptotic properties of the resulting estimators are established. In addition, some formal hypothesis tests are constructed for various hypotheses concerning the mark-specific treatment effects. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a data set from the first HIV vaccine efficacy trial is provided.  相似文献   

12.
This paper deals with the nonparametric estimation of the mean and variance functions of univariate time series data. We propose a nonparametric dimension reduction technique for both mean and variance functions of time series. This method does not require any model specification and instead we seek directions in both the mean and variance functions such that the conditional distribution of the current observation given the vector of past observations is the same as that of the current observation given a few linear combinations of the past observations without loss of inferential information. The directions of the mean and variance functions are estimated by maximizing the Kullback–Leibler distance function. The consistency of the proposed estimators is established. A computational procedure is introduced to detect lags of the conditional mean and variance functions in practice. Numerical examples and simulation studies are performed to illustrate and evaluate the performance of the proposed estimators.  相似文献   

13.
Motivated by an application, we consider the statistical inference of varying-coefficient regression models in which some covariates are not observed, but ancillary variables are available to remit them. Due to the attenuation, the usual local polynomial estimation of the coefficient functions is not consistent. We propose a corrected local polynomial estimation for the unknown coefficient functions by calibrating the error-prone covariates. It is shown that the resulting estimators are consistent and asymptotically normal. In addition, we develop a wild bootstrap test for the goodness of fit of models. Some simulations are conducted to demonstrate the finite sample performances of the proposed estimation and test procedures. An example of application on a real data from Duchenne muscular dystrophy study is also illustrated.  相似文献   

14.
ABSTRACT

Let us consider that the variance function or its νth derivative in a regression model has a change/discontinuity point at an unknown location. To use the local polynomial fits, the log-variance function which break the positivity is targeted. The location and the jump size of the change point are estimated based on a one-sided kernel-weighted local-likelihood function which is provided by the χ2-distribution. The whole structure of the log-variance function is then estimated using the data sets split by the estimated location. Asymptotic results of the proposed estimators are described. Numerical works demonstrate the performances of the methods with simulated and real examples.  相似文献   

15.
This paper deals with the estimation of the error distribution function in a varying coefficient regression model. We propose two estimators and study their asymptotic properties by obtaining uniform stochastic expansions. The first estimator is a residual-based empirical distribution function. We study this estimator when the varying coefficients are estimated by under-smoothed local quadratic smoothers. Our second estimator which exploits the fact that the error distribution has mean zero is a weighted residual-based empirical distribution whose weights are chosen to achieve the mean zero property using empirical likelihood methods. The second estimator improves on the first estimator. Bootstrap confidence bands based on the two estimators are also discussed.  相似文献   

16.
Efficient statistical inference on nonignorable missing data is a challenging problem. This paper proposes a new estimation procedure based on composite quantile regression (CQR) for linear regression models with nonignorable missing data, that is applicable even with high-dimensional covariates. A parametric model is assumed for modelling response probability, which is estimated by the empirical likelihood approach. Local identifiability of the proposed strategy is guaranteed on the basis of an instrumental variable approach. A set of data-based adaptive weights constructed via an empirical likelihood method is used to weight CQR functions. The proposed method is resistant to heavy-tailed errors or outliers in the response. An adaptive penalisation method for variable selection is proposed to achieve sparsity with high-dimensional covariates. Limiting distributions of the proposed estimators are derived. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. An application to the ACTG 175 data is analysed.  相似文献   

17.
Abstract. We consider the properties of the local polynomial estimators of a counting process intensity function and its derivatives. By expressing the local polynomial estimators in a kernel smoothing form via effective kernels, we show that the bias and variance of the estimators at boundary points are of the same magnitude as at interior points and therefore the local polynomial estimators in the context of intensity estimation also enjoy the automatic boundary correction property as they do in other contexts such as regression. The asymptotically optimal bandwidths and optimal kernel functions are obtained through the asymptotic expressions of the mean square error of the estimators. For practical purpose, we suggest an effective and easy‐to‐calculate data‐driven bandwidth selector. Simulation studies are carried out to assess the performance of the local polynomial estimators and the proposed bandwidth selector. The estimators and the bandwidth selector are applied to estimate the rate of aftershocks of the Sichuan earthquake and the rate of the Personal Emergency Link calls in Hong Kong.  相似文献   

18.
王芝皓等 《统计研究》2021,38(7):127-139
在实际数据分析中经常会遇到零膨胀计数数据作为响应变量与函数型随机变量和随机向量作为预测变量相关联。本文考虑函数型部分变系数零膨胀模型 (FPVCZIM),模型中无穷维的斜率函数用函数型主成分基逼近,系数函数用B-样条进行拟合。通过EM 算法得到估计量,讨论其理论性质,在一些正则条件下获得了斜率函数和系数函数估计量的收敛速度。有限样本的Monte Carlo 模拟研究和真实数据分析被用来解释本文提出的方法。  相似文献   

19.
Summary.  There is a large literature on methods of analysis for randomized trials with noncompliance which focuses on the effect of treatment on the average outcome. The paper considers evaluating the effect of treatment on the entire distribution and general functions of this effect. For distributional treatment effects, fully non-parametric and fully parametric approaches have been proposed. The fully non-parametric approach could be inefficient but the fully parametric approach is not robust to the violation of distribution assumptions. We develop a semiparametric instrumental variable method based on the empirical likelihood approach. Our method can be applied to general outcomes and general functions of outcome distributions and allows us to predict a subject's latent compliance class on the basis of an observed outcome value in observed assignment and treatment received groups. Asymptotic results for the estimators and likelihood ratio statistic are derived. A simulation study shows that our estimators of various treatment effects are substantially more efficient than the currently used fully non-parametric estimators. The method is illustrated by an analysis of data from a randomized trial of an encouragement intervention to improve adherence to prescribed depression treatments among depressed elderly patients in primary care practices.  相似文献   

20.
We analyze left-truncated and right-censored (LTRC) data using an additive-multiplicative Cox–Aalen model proposed by Scheike and Zhang (2002), which extends the Cox regression model as well as the additive Aalen model. Based on the conditional likelihood function, we derive the weighted least-squared (WLS) estimators for the regression parameters and cumulative intensity functions of the model. The estimators are shown to be consistent and asymptotically normal. A simulation study is conducted to investigate the performance of the proposed estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号