首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
This paper develops the theory of calibration estimation and proposes calibration approach alternative to existing calibration estimators for estimating population mean of the study variable using auxiliary variable in stratified sampling. The theory of new calibration estimation is given and optimum weights are derived. A simulation study is carried out to performance of the proposed calibration estimator with other existing calibration estimators. The results reveal that the proposed calibration estimators are more efficient than Tracy et al., Singh et al., Singh calibration estimators of the population mean.  相似文献   

2.
In this article, we propose a new difference-type estimator in estimating the finite population mean in stratified double sampling by using the ranks of two auxiliary variables as an additional information. The proposed estimator performs better than the usual sample mean estimator, ratio estimator, exponential estimator, Choudhury and Singh (2012) estimator, Vishwakarma and Gangele (2014) estimator, Singh and Khalid (2015) estimator, Khan and Al-Hossain (2016) estimator, Khan (2016) estimator, and the usual difference estimator. Two real datasets are used to observe the performances of estimators.  相似文献   

3.
Calibration estimation improves the precision of the estimates of population parameters by incorporating specified auxiliary information. A class of calibration estimators has been proposed for estimating the population mean by making use of a set of calibration constraints in stratified sampling. The estimator of variance of the proposed calibration estimator of the mean is derived using a lower level calibration approach. The idea is extended for stratified double sampling. A simulation study is used to evaluate the performances of the proposed estimators by comparing them with the similar estimators developed by Tracy, Singh and Arnab (2003 Tracy, D.S., Singh, S., Arnab, R. (2003). Note on calibration in stratified and double sampling. Surv. Methodol. 29(1): 99104. [Google Scholar]) based on different sets of calibration constraints.  相似文献   

4.
We propose an improved difference-cum-exponential ratio type estimator for estimating the finite population mean in simple and stratified random sampling using two auxiliary variables. We obtain properties of the estimators up to first order of approximation. The proposed class of estimators is found to be more efficient than the usual sample mean estimator, ratio estimator, exponential ratio type estimator, usual two difference type estimators, Rao (1991) estimator, Gupta and Shabbir (2008) estimator, and Grover and Kaur (2011) estimator. We use six real data sets in simple random sampling and two in stratified sampling for numerical comparisons.  相似文献   

5.
Abstract

In the present article, an effort has been made to develop calibration estimators of the population mean under two-stage stratified random sampling design when auxiliary information is available at primary stage unit (psu) level. The properties of the developed estimators are derived in-terms of design based approximate variance and approximate consistent design based estimator of the variance. Some simulation studies have been conducted to investigate the relative performance of calibration estimator over the usual estimator of the population mean without using auxiliary information in two-stage stratified random sampling. Proposed calibration estimators have outperformed the usual estimator without using auxiliary information.  相似文献   

6.
We propose a new ratio type estimator for estimating the finite population mean using two auxiliary variables in stratified two-phase sampling. Expressions for bias and mean squared error of the proposed estimator are derived up to the first order of approximation. The proposed estimator is more efficient than the usual stratified sample mean estimator, traditional stratified ratio estimator and some other stratified estimators including Bahl and Tuteja (1991 Bahl, S., Tuteja, R. K. (1991). Ratio and product type exponential estimators. Information and Optimization Sciences 12:159163. [Google Scholar]), Chami et al. (2012 Chami, P. S., Singh, B., Thomas, D. (2012). A two-prameter ratio-product-ratio estimator using auxiliary information. ISRN Probability and Statistics 2012:115, doi: 10.5402/2012/103860.[Crossref] [Google Scholar]), Chand (1975 Chand, L. (1975) Some Ratio Type Estimator Based on two or more Auxiliary Variables, Ph.D. dissertation, Iowa State University, Ames, Iowa (unpublished). [Google Scholar]), Choudhury and Singh (2012 Choudhury, S., Singh, B. K. (2012). A class of chain ratio-product type estimators with two auxiliary variables under double sampling scheme. Journal of the Korean Statistical Society 41:247256. [Google Scholar]), Hamad et al. (2013 Hamad, N., Hanif, M., Haider, N. (2013). A regression type estimator with two auxiliary variables for two-phase sampling. Open Journal of Statistics, 3:7478. [Google Scholar]), Vishwakarma and Gangele (2014 Vishwakarma, G. K., Gangele, R. K. (2014). A class of chain ratio-type exponential estimators in double sampling using two auxiliary variates. Applied Mathematics and Computation 227:171175. [Google Scholar]), Sanaullah et al. (2014 Sanaullah, A., Ali, H. M., Noor ul Amin, M., Hanif, M. (2014). Generalized exponential chain ratio estimators under stratified two-phase random sampling. Applied Mathematics and Computation 226:541547. [Google Scholar]), and Chanu and Singh (2014 Chanu, W. K., Singh, B. K. (2014). Improved class of ratio-cum-product estimators of finite population mean in two phase sampling. Global Journal of Science Frontier Research: F Mathematics and Decision Sciences 14(2):114. [Google Scholar]).  相似文献   

7.
Double sampling scheme is used when cheap auxiliary variables may be measured to improve the estimation of a finite population parameter. Several estimators for population mean, ratio of means and variance are available, when two dependent samples are drawn. However, there are few proposals for the case of independent samples. In this paper both cases of dependent and independent samples are dealt with. A general approach for estimating a finite population parameter is given, showing that all the proposed estimators are particular cases of the same general class. The minimum variance bound for any estimator in this class is provided (at the first order of approximation). Furthermore, an optimal estimator which reaches this minimum is found.  相似文献   

8.
An attempt has been mads to suggest some estimators for population mean in double sampling with two auxiliary variables., alternative to the usual regression estimator. When the experimenter has partial Information about the mean of the auxiliary variable or variables, preliminary test estimators can be used. The bias, mean square error, relative efficiency and optimum allocation of sample sizes are obtained for the suggested estimators.  相似文献   

9.
Calibration on the available auxiliary variables is widely used to increase the precision of the estimates of parameters. Singh and Sedory [Two-step calibration of design weights in survey sampling. Commun Stat Theory Methods. 2016;45(12):3510–3523.] considered the problem of calibration of design weights under two-step for single auxiliary variable. For a given sample, design weights and calibrated weights are set proportional to each other, in the first step. While, in the second step, the value of proportionality constant is determined on the basis of objectives of individual investigator/user for, for example, to get minimum mean squared error or reduction of bias. In this paper, we have suggested to use two auxiliary variables for two-step calibration of the design weights and compared the results with single auxiliary variable for different sample sizes based on simulated and real-life data set. The simulated and real-life application results show that two-auxiliary variables based two-step calibration estimator outperforms the estimator under single auxiliary variable in terms of minimum mean squared error.  相似文献   

10.
ABSTRACT

This paper deals with the problem of estimating the finite population mean in stratified random sampling by using two auxiliary variables. This paper proposed a ratio-cum-product exponential type estimator of population mean under different situations: (i) when there is presence of non-response and measurement errors on the study as well as auxiliary variables; (ii) when there is non-response on the study and auxiliary variables but with no measurement error; (iii) when there is complete response on study variable but there is presence of non-response and measurement error on the auxiliary variables and (iv) when there are complete response and measurement error on study as well as auxiliary variables. The expressions of the bias and mean square error of the proposed estimator have been obtained up to the first degree of approximation. The proposed estimator has been compared with usual unbiased estimator, ratio estimator and other existing estimators and the conditions obtained to show the efficacy of the proposed estimator over other considered estimators. Simulation study is carried out to support the theoretical findings.  相似文献   

11.
In this article, we propose a new class of estimators to estimate the finite population mean by using two auxiliary variables under two different sampling schemes such as simple random sampling and stratified random sampling. The proposed class of estimators gives minimum mean squared error as compared to all other considered estimators. Some real data sets are used to observe the performances of the estimators. We show numerically that the proposed class of estimators performs better as compared to all other competitor estimators.  相似文献   

12.
Kernel density estimation is probably the most widely used non parametric statistical method for estimating probability densities. In this paper, we investigate the performance of kernel density estimator based on stratified simple and ranked set sampling. Some asymptotic properties of kernel estimator are established under both sampling schemes. Simulation studies are designed to examine the performance of the proposed estimators under varying distributional assumptions. These findings are also illustrated with the help of a dataset on bilirubin levels in babies in a neonatal intensive care unit.  相似文献   

13.
This paper proposes an efficient stratified randomized response model based on Chang et al.'s (2004) model. We have obtained the variance of the proposed estimator of πs, the proportion of the respondents in the population belonging to a sensitive group, under proportional and Neyman allocations. It is shown that the estimator based on the proposed model is more efficient than the Chang et al.'s (2004) estimator under both proportional as well as Neyman allocations, Hong et al.'s (1994) estimator and Kim and Warde's (2004) estimator. Numerical illustration and pictorial representation are given in support of the present study.  相似文献   

14.
Adaptive cluster sampling (ACS) is considered to be the most suitable sampling design for the estimation of rare, hidden, clustered and hard-to-reach population units. The main characteristic of this design is that it may select more meaningful samples and provide more efficient estimates for the field investigator as compare to the other conventional sampling designs. In this paper, we proposed a generalized estimator with a single auxiliary variable for the estimation of rare, hidden and highly clustered population variance under ACS design. The expressions of approximate bias and mean square error are derived and the efficiency comparisons have been made with other existing estimators. A numerical study is carried out on a real population of aquatic birds together with an artificial population generated by Poisson cluster process. Related results of numerical study show that the proposed generalized variance estimator is able to provide considerably better results over the competing estimators.  相似文献   

15.
M. Bloznelis 《Statistics》2013,47(6):489-504
Using the ANOVA decomposition, we obtain an explicit formula for the bias of the jackknife variance estimator in stratified samples drawn without replacement. For a wide class of asymptotically linear statistics, we show the consistency of the jackknife variance estimator and establish the asymptotic normality of their Studentized versions.  相似文献   

16.
We propose an improved class of exponential ratio type estimators for coefficient of variation (CV) of a finite population in simple and stratified random sampling using two auxiliary variables under two-phase sampling scheme. We examine the properties of the proposed estimators based on first order of approximation. The proposed class of estimators is more efficient than the usual sample CV estimator, ratio estimator, exponential ratio estimator, usual difference estimator and modified difference type estimator. We also use real data sets for numerical comparisons.  相似文献   

17.
This work considers the problem of estimating a quantile function based on different stratified sampling mechanism. First, we develop an estimate for population quantiles based on stratified simple random sampling (SSRS) and extend the discussion for stratified ranked set sampling (SRSS). Furthermore, the asymptotic behavior of the proposed estimators are presented. In addition, we derive an analytical expression for the optimal allocation under both sampling schemes. Simulation studies are designed to examine the performance of the proposed estimators under varying distributional assumptions. The efficiency of the proposed estimates is further illustrated by analyzing a real data set from CHNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号