首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
In the medical literature, there has been an increased interest in evaluating association between exposure and outcomes using nonrandomized observational studies. However, because assignments to exposure are not random in observational studies, comparisons of outcomes between exposed and nonexposed subjects must account for the effect of confounders. Propensity score methods have been widely used to control for confounding, when estimating exposure effect. Previous studies have shown that conditioning on the propensity score results in biased estimation of conditional odds ratio and hazard ratio. However, research is lacking on the performance of propensity score methods for covariate adjustment when estimating the area under the ROC curve (AUC). In this paper, AUC is proposed as measure of effect when outcomes are continuous. The AUC is interpreted as the probability that a randomly selected nonexposed subject has a better response than a randomly selected exposed subject. A series of simulations has been conducted to examine the performance of propensity score methods when association between exposure and outcomes is quantified by AUC; this includes determining the optimal choice of variables for the propensity score models. Additionally, the propensity score approach is compared with that of the conventional regression approach to adjust for covariates with the AUC. The choice of the best estimator depends on bias, relative bias, and root mean squared error. Finally, an example looking at the relationship of depression/anxiety and pain intensity in people with sickle cell disease is used to illustrate the estimation of the adjusted AUC using the proposed approaches.  相似文献   

2.
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.  相似文献   

3.
Statistical learning is emerging as a promising field where a number of algorithms from machine learning are interpreted as statistical methods and vice-versa. Due to good practical performance, boosting is one of the most studied machine learning techniques. We propose algorithms for multivariate density estimation and classification. They are generated by using the traditional kernel techniques as weak learners in boosting algorithms. Our algorithms take the form of multistep estimators, whose first step is a standard kernel method. Some strategies for bandwidth selection are also discussed with regard both to the standard kernel density classification problem, and to our 'boosted' kernel methods. Extensive experiments, using real and simulated data, show an encouraging practical relevance of the findings. Standard kernel methods are often outperformed by the first boosting iterations and in correspondence of several bandwidth values. In addition, the practical effectiveness of our classification algorithm is confirmed by a comparative study on two real datasets, the competitors being trees including AdaBoosting with trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号