首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
For the cancer clinical trials with immunotherapy and molecularly targeted therapy, time-to-event endpoint is often a desired endpoint. In this paper, we present an event-driven approach for Bayesian one-stage and two-stage single-arm phase II trial designs. Two versions of Bayesian one-stage designs were proposed with executable algorithms and meanwhile, we also develop theoretical relationships between the frequentist and Bayesian designs. These findings help investigators who want to design a trial using Bayesian approach have an explicit understanding of how the frequentist properties can be achieved. Moreover, the proposed Bayesian designs using the exact posterior distributions accommodate the single-arm phase II trials with small sample sizes. We also proposed an optimal two-stage approach, which can be regarded as an extension of Simon's two-stage design with the time-to-event endpoint. Comprehensive simulations were conducted to explore the frequentist properties of the proposed Bayesian designs and an R package BayesDesign can be assessed via R CRAN for convenient use of the proposed methods.  相似文献   

2.
The choice between single-arm designs versus randomized double-arm designs has been contentiously debated in the literature of phase II oncology trials. Recently, as a compromise, the single-to-double arm transition design was proposed, combining the two designs into one trial over two stages. Successful implementation of the two-stage transition design requires a suspension period at the end of the first stage to collect the response data of the already enrolled patients. When the evaluation of the primary efficacy endpoint is overly long, the between-stage suspension period may unfavorably prolong the trial duration and cause a delay in treating future eligible patients. To accelerate the trial, we propose a Bayesian single-to-double arm design with short-term endpoints (BSDS), where an intermediate short-term endpoint is used for making early termination decisions at the end of the single-arm stage, followed by an evaluation of the long-term endpoint at the end of the subsequent double-arm stage. Bayesian posterior probabilities are used as the primary decision-making tool at the end of the trial. Design calibration steps are proposed for this Bayesian monitoring process to control the frequentist operating characteristics and minimize the expected sample size. Extensive simulation studies have demonstrated that our design has comparable power and average sample size but a much shorter trial duration than conventional single-to-double arm design. Applications of the design are illustrated using two phase II oncology trials with binary endpoints.  相似文献   

3.
Abstract

In this paper, we propose a Bayesian two-stage design with changing hypothesis test by bridging a single-arm study and a double-arm randomized trial in one phase II clinical trial based on continuous endpoints rather than binary endpoints. We have also calibrated with respect to frequentist and Bayesian error rates. The proposed design minimizes the Bayesian expected sample size if the new candidate has low or high efficacy activity subject to the constraint upon error rates in both frequentist and Bayesian perspectives. Tables of designs for various combinations of design parameters are also provided.  相似文献   

4.
Randomized phase II selection trials seek to provide unbiased comparisons for the selection of the most promising treatment arm for evaluation in a future phase III trial. In this paper, we present an application of an adaptive design to a randomized phase II selection trial comparing three experimental treatments with a control arm in patients with advanced gastric cancer. The trial design continuously monitors multiple patient outcomes to protect future patients from treatments with unacceptably high toxicity and/or unacceptably low efficacy. We use a Bayesian approach to monitor the trial and carry out simulations to investigate operating characteristics of the trial design. The simulation study also evaluates the sensitivity of the design to the prior distribution by considering two alternative priors.  相似文献   

5.
Basket trials evaluate a single drug targeting a single genetic variant in multiple cancer cohorts. Empirical findings suggest that treatment efficacy across baskets may be heterogeneous. Most modern basket trial designs use Bayesian methods. These methods require the prior specification of at least one parameter that permits information sharing across baskets. In this study, we provide recommendations for selecting a prior for scale parameters for adaptive basket trials by using Bayesian hierarchical modeling. Heterogeneity among baskets attracts much attention in basket trial research, and substantial heterogeneity challenges the basic assumption of exchangeability of Bayesian hierarchical approach. Thus, we also allowed each stratum-specific parameter to be exchangeable or nonexchangeable with similar strata by using data observed in an interim analysis. Through a simulation study, we evaluated the overall performance of our design based on statistical power and type I error rates. Our research contributes to the understanding of the properties of Bayesian basket trial designs.  相似文献   

6.
Clinical trials in the era of precision cancer medicine aim to identify and validate biomarker signatures which can guide the assignment of individually optimal treatments to patients. In this article, we propose a group sequential randomized phase II design, which updates the biomarker signature as the trial goes on, utilizes enrichment strategies for patient selection, and uses Bayesian response-adaptive randomization for treatment assignment. To evaluate the performance of the new design, in addition to the commonly considered criteria of Type I error and power, we propose four new criteria measuring the benefits and losses for individuals both inside and outside of the clinical trial. Compared with designs with equal randomization, the proposed design gives trial participants a better chance to receive their personalized optimal treatments and thus results in a higher response rate on the trial. This design increases the chance to discover a successful new drug by an adaptive enrichment strategy, i.e. identification and selective enrollment of a subset of patients who are sensitive to the experimental therapies. Simulation studies demonstrate these advantages of the proposed design. It is illustrated by an example based on an actual clinical trial in non-small-cell lung cancer.  相似文献   

7.
Decision making is a critical component of a new drug development process. Based on results from an early clinical trial such as a proof of concept trial, the sponsor can decide whether to continue, stop, or defer the development of the drug. To simplify and harmonize the decision‐making process, decision criteria have been proposed in the literature. One of them is to exam the location of a confidence bar relative to the target value and lower reference value of the treatment effect. In this research, we modify an existing approach by moving some of the “stop” decision to “consider” decision so that the chance of directly terminating the development of a potentially valuable drug can be reduced. As Bayesian analysis has certain flexibilities and can borrow historical information through an inferential prior, we apply the Bayesian analysis to the trial planning and decision making. Via a design prior, we can also calculate the probabilities of various decision outcomes in relationship with the sample size and the other parameters to help the study design. An example and a series of computations are used to illustrate the applications, assess the operating characteristics, and compare the performances of different approaches.  相似文献   

8.
The aim of a phase II clinical trial is to decide whether or not to develop an experimental therapy further through phase III clinical evaluation. In this paper, we present a Bayesian approach to the phase II trial, although we assume that subsequent phase III clinical trials will have standard frequentist analyses. The decision whether to conduct the phase III trial is based on the posterior predictive probability of a significant result being obtained. This fusion of Bayesian and frequentist techniques accepts the current paradigm for expressing objective evidence of therapeutic value, while optimizing the form of the phase II investigation that leads to it. By using prior information, we can assess whether a phase II study is needed at all, and how much or what sort of evidence is required. The proposed approach is illustrated by the design of a phase II clinical trial of a multi‐drug resistance modulator used in combination with standard chemotherapy in the treatment of metastatic breast cancer. Copyright © 2005 John Wiley & Sons, Ltd  相似文献   

9.
We investigate Bayesian optimal designs for changepoint problems. We find robust optimal designs which allow for arbitrary distributions before and after the change, arbitrary prior densities on the parameters before and after the change, and any log‐concave prior density on the changepoint. We define a new design measure for Bayesian optimal design problems as a means of finding the optimal design. Our results apply to any design criterion function concave in the design measure. We illustrate our results by finding the optimal design in a problem motivated by a previous clinical trial. The Canadian Journal of Statistics 37: 495–513; 2009 © 2009 Statistical Society of Canada  相似文献   

10.
A robust Bayesian design is presented for a single-arm phase II trial with an early stopping rule to monitor a time to event endpoint. The assumed model is a piecewise exponential distribution with non-informative gamma priors on the hazard parameters in subintervals of a fixed follow up interval. As an additional comparator, we also define and evaluate a version of the design based on an assumed Weibull distribution. Except for the assumed models, the piecewise exponential and Weibull model based designs are identical to an established design that assumes an exponential event time distribution with an inverse gamma prior on the mean event time. The three designs are compared by simulation under several log-logistic and Weibull distributions having different shape parameters, and for different monitoring schedules. The simulations show that, compared to the exponential inverse gamma model based design, the piecewise exponential design has substantially better performance, with much higher probabilities of correctly stopping the trial early, and shorter and less variable trial duration, when the assumed median event time is unacceptably low. Compared to the Weibull model based design, the piecewise exponential design does a much better job of maintaining small incorrect stopping probabilities in cases where the true median survival time is desirably large.  相似文献   

11.
Bayesian dynamic borrowing designs facilitate borrowing information from historical studies. Historical data, when perfectly commensurate with current data, have been shown to reduce the trial duration and the sample size, while inflation in the type I error and reduction in the power have been reported, when imperfectly commensurate. These results, however, were obtained without considering that Bayesian designs are calibrated to meet regulatory requirements in practice and even no‐borrowing designs may use information from historical data in the calibration. The implicit borrowing of historical data suggests that imperfectly commensurate historical data may similarly impact no‐borrowing designs negatively. We will provide a fair appraiser of Bayesian dynamic borrowing and no‐borrowing designs. We used a published selective adaptive randomization design and real clinical trial setting and conducted simulation studies under varying degrees of imperfectly commensurate historical control scenarios. The type I error was inflated under the null scenario of no intervention effect, while larger inflation was noted with borrowing. The larger inflation in type I error under the null setting can be offset by the greater probability to stop early correctly under the alternative. Response rates were estimated more precisely and the average sample size was smaller with borrowing. The expected increase in bias with borrowing was noted, but was negligible. Using Bayesian dynamic borrowing designs may improve trial efficiency by stopping trials early correctly and reducing trial length at the small cost of inflated type I error.  相似文献   

12.
The Simon's two‐stage design is the most commonly applied among multi‐stage designs in phase IIA clinical trials. It combines the sample sizes at the two stages in order to minimize either the expected or the maximum sample size. When the uncertainty about pre‐trial beliefs on the expected or desired response rate is high, a Bayesian alternative should be considered since it allows to deal with the entire distribution of the parameter of interest in a more natural way. In this setting, a crucial issue is how to construct a distribution from the available summaries to use as a clinical prior in a Bayesian design. In this work, we explore the Bayesian counterparts of the Simon's two‐stage design based on the predictive version of the single threshold design. This design requires specifying two prior distributions: the analysis prior, which is used to compute the posterior probabilities, and the design prior, which is employed to obtain the prior predictive distribution. While the usual approach is to build beta priors for carrying out a conjugate analysis, we derived both the analysis and the design distributions through linear combinations of B‐splines. The motivating example is the planning of the phase IIA two‐stage trial on anti‐HER2 DNA vaccine in breast cancer, where initial beliefs formed from elicited experts' opinions and historical data showed a high level of uncertainty. In a sample size determination problem, the impact of different priors is evaluated.  相似文献   

13.
14.
In oncology, toxicity is typically observable shortly after a chemotherapy treatment, whereas efficacy, often characterized by tumor shrinkage, is observable after a relatively long period of time. In a phase II clinical trial design, we propose a Bayesian adaptive randomization procedure that accounts for both efficacy and toxicity outcomes. We model efficacy as a time-to-event endpoint and toxicity as a binary endpoint, sharing common random effects in order to induce dependence between the bivariate outcomes. More generally, we allow the randomization probability to depend on patients’ specific covariates, such as prognostic factors. Early stopping boundaries are constructed for toxicity and futility, and a superior treatment arm is recommended at the end of the trial. Following the setup of a recent renal cancer clinical trial at M. D. Anderson Cancer Center, we conduct extensive simulation studies under various scenarios to investigate the performance of the proposed method, and compare it with available Bayesian adaptive randomization procedures.  相似文献   

15.
Various statistical models have been proposed for two‐dimensional dose finding in drug‐combination trials. However, it is often a dilemma to decide which model to use when conducting a particular drug‐combination trial. We make a comprehensive comparison of four dose‐finding methods, and for fairness, we apply the same dose‐finding algorithm under the four model structures. Through extensive simulation studies, we compare the operating characteristics of these methods in various practical scenarios. The results show that different models may lead to different design properties and that no single model performs uniformly better in all scenarios. As a result, we propose using Bayesian model averaging to overcome the arbitrariness of the model specification and enhance the robustness of the design. We assign a discrete probability mass to each model as the prior model probability and then estimate the toxicity probabilities of combined doses in the Bayesian model averaging framework. During the trial, we adaptively allocated each new cohort of patients to the most appropriate dose combination by comparing the posterior estimates of the toxicity probabilities with the prespecified toxicity target. The simulation results demonstrate that the Bayesian model averaging approach is robust under various scenarios. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A randomized two-stage adaptive Bayesian design is proposed and studied for allocation and comparison in a phase III clinical trial with survival time as treatment response. Several exact and limiting properties of the design and the follow-up inference are studied, both numerically and theoretically, and are compared with a single-stage randomized procedure. The applicability of the proposed methodology is illustrated by using some real data.  相似文献   

17.
Sequential administration of immunotherapy following radiotherapy (immunoRT) has attracted much attention in cancer research. Due to its unique feature that radiotherapy upregulates the expression of a predictive biomarker for immunotherapy, novel clinical trial designs are needed for immunoRT to identify patient subgroups and the optimal dose for each subgroup. In this article, we propose a Bayesian phase I/II design for immunotherapy administered after standard-dose radiotherapy for this purpose. We construct a latent subgroup membership variable and model it as a function of the baseline and pre-post radiotherapy change in the predictive biomarker measurements. Conditional on the latent subgroup membership of each patient, we jointly model the continuous immune response and the binary efficacy outcome using plateau models, and model toxicity using the equivalent toxicity score approach to account for toxicity grades. During the trial, based on accumulating data, we continuously update model estimates and adaptively randomize patients to admissible doses. Simulation studies and an illustrative trial application show that our design has good operating characteristics in terms of identifying both patient subgroups and the optimal dose for each subgroup.  相似文献   

18.
This paper develops clinical trial designs that compare two treatments with a binary outcome. The imprecise beta class (IBC), a class of beta probability distributions, is used in a robust Bayesian framework to calculate posterior upper and lower expectations for treatment success rates using accumulating data. The posterior expectation for the difference in success rates can be used to decide when there is sufficient evidence for randomized treatment allocation to cease. This design is formally related to the randomized play‐the‐winner (RPW) design, an adaptive allocation scheme where randomization probabilities are updated sequentially to favour the treatment with the higher observed success rate. A connection is also made between the IBC and the sequential clinical trial design based on the triangular test. Theoretical and simulation results are presented to show that the expected sample sizes on the truly inferior arm are lower using the IBC compared with either the triangular test or the RPW design, and that the IBC performs well against established criteria involving error rates and the expected number of treatment failures.  相似文献   

19.
Use of full Bayesian decision-theoretic approaches to obtain optimal stopping rules for clinical trial designs typically requires the use of Backward Induction. However, the implementation of Backward Induction, apart from simple trial designs, is generally impossible due to analytical and computational difficulties. In this paper we present a numerical approximation of Backward Induction in a multiple-arm clinical trial design comparing k experimental treatments with a standard treatment where patient response is binary. We propose a novel stopping rule, denoted by τ p , as an approximation of the optimal stopping rule, using the optimal stopping rule of a single-arm clinical trial obtained by Backward Induction. We then present an example of a double-arm (k=2) clinical trial where we use a simulation-based algorithm together with τ p to estimate the expected utility of continuing and compare our estimates with exact values obtained by an implementation of Backward Induction. For trials with more than two treatment arms, we evaluate τ p by studying its operating characteristics in a three-arm trial example. Results from these examples show that our approximate trial design has attractive properties and hence offers a relevant solution to the problem posed by Backward Induction.  相似文献   

20.
Immunotherapy—treatments that enlist the immune system to battle tumors—has received widespread attention in cancer research. Due to its unique features and mechanisms for treating cancer, immunotherapy requires novel clinical trial designs. We propose a Bayesian seamless phase I/II randomized design for immunotherapy trials (SPIRIT) to find the optimal biological dose (OBD) defined in terms of the restricted mean survival time. We jointly model progression‐free survival and the immune response. Progression‐free survival is used as the primary endpoint to determine the OBD, and the immune response is used as an ancillary endpoint to quickly screen out futile doses. Toxicity is monitored throughout the trial. The design consists of two seamlessly connected stages. The first stage identifies a set of safe doses. The second stage adaptively randomizes patients to the safe doses identified and uses their progression‐free survival and immune response to find the OBD. The simulation study shows that the SPIRIT has desirable operating characteristics and outperforms the conventional design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号