首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Maximum likelihood approach is the most frequently employed approach for the inference of linear mixed models. However, it relies on the normal distributional assumption of the random effects and the within-subject errors, and it is lack of robustness against outliers. This article proposes a semiparametric estimation approach for linear mixed models. This approach is based on the first two marginal moments of the response variable, and does not require any parametric distributional assumptions of random effects or error terms. The consistency and asymptotically normality of the estimator are derived under fairly general conditions. In addition, we show that the proposed estimator has a bounded influence function and a redescending property so it is robust to outliers. The methodology is illustrated through an application to the famed Framingham cholesterol data. The finite sample behavior and the robustness properties of the proposed estimator are evaluated through extensive simulation studies.  相似文献   

2.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

3.
Motivated by the joint analysis of longitudinal quality of life data and recurrence free survival times from a cancer clinical trial, we present in this paper two approaches to jointly model the longitudinal proportional measurements, which are confined in a finite interval, and survival data. Both approaches assume a proportional hazards model for the survival times. For the longitudinal component, the first approach applies the classical linear mixed model to logit transformed responses, while the second approach directly models the responses using a simplex distribution. A semiparametric method based on a penalized joint likelihood generated by the Laplace approximation is derived to fit the joint model defined by the second approach. The proposed procedures are evaluated in a simulation study and applied to the analysis of breast cancer data motivated this research.  相似文献   

4.
Mixed effects models and Berkson measurement error models are widely used. They share features which the author uses to develop a unified estimation framework. He deals with models in which the random effects (or measurement errors) have a general parametric distribution, whereas the random regression coefficients (or unobserved predictor variables) and error terms have nonparametric distributions. He proposes a second-order least squares estimator and a simulation-based estimator based on the first two moments of the conditional response variable given the observed covariates. He shows that both estimators are consistent and asymptotically normally distributed under fairly general conditions. The author also reports Monte Carlo simulation studies showing that the proposed estimators perform satisfactorily for relatively small sample sizes. Compared to the likelihood approach, the proposed methods are computationally feasible and do not rely on the normality assumption for random effects or other variables in the model.  相似文献   

5.
Several two component mixture models from the transformed gamma and transformed beta families are developed to assess risk performance. Their common statistical properties are given and applications to real insurance loss data are shown. A new data trimming approach for parameter estimation is proposed using the maximum likelihood estimation method. Assessment with respect to Value-at-Risk and Conditional Tail Expectation risk measures are presented. Of all the models examined, the mixture of inverse transformed gamma-Burr distributions consistently provides good results in terms of goodness-of-fit and risk estimation in the context of the Danish fire loss data.  相似文献   

6.
Inference in generalized linear mixed models with multivariate random effects is often made cumbersome by the high-dimensional intractable integrals involved in the marginal likelihood. This article presents an inferential methodology based on the GEE approach. This method involves the approximations of the marginal likelihood and joint moments of the variables. It is also proposed an approximate Akaike and Bayesian information criterions based on the approximate marginal likelihood using the estimation of the parameters by the GEE approach. The different results are illustrated with a simulation study and with an analysis of real data from health-related quality of life.  相似文献   

7.
This paper is concerned with the ridge estimation of fixed and random effects in the context of Henderson's mixed model equations in the linear mixed model. For this purpose, a penalized likelihood method is proposed. A linear combination of ridge estimator for fixed and random effects is compared to a linear combination of best linear unbiased estimator for fixed and random effects under the mean-square error (MSE) matrix criterion. Additionally, for choosing the biasing parameter, a method of MSE under the ridge estimator is given. A real data analysis is provided to illustrate the theoretical results and a simulation study is conducted to characterize the performance of ridge and best linear unbiased estimators approach in the linear mixed model.  相似文献   

8.
For right-censored data, Zeng et al. [Semiparametirc transformation modes with random effects for clustered data. Statist Sin. 2008;18:355–377] proposed a class of semiparametric transformation models with random effects to formulate the effects of possibly time-dependent covariates on clustered failure times. In this article, we demonstrate that the approach of Zeng et al. can be extended to analyse clustered doubly censored data. The asymptotic properties of the nonparametric maximum likelihood estimators of the model parameters are derived. A simulation study is conducted to investigate the performance of the proposed estimators.  相似文献   

9.
In this article, an alternative estimation approach is proposed to fit linear mixed effects models where the random effects follow a finite mixture of normal distributions. This heterogeneity linear mixed model is an interesting tool since it relaxes the classical normality assumption and is also perfectly suitable for classification purposes, based on longitudinal profiles. Instead of fitting directly the heterogeneity linear mixed model, we propose to fit an equivalent mixture of linear mixed models under some restrictions which is computationally simpler. Unlike the former model, the latter can be maximized analytically using an EM-algorithm and the obtained parameter estimates can be easily used to compute the parameter estimates of interest.  相似文献   

10.
This paper is mainly concerned with modelling data from degradation sample paths over time. It uses a general growth curve model with Box‐Cox transformation, random effects and ARMA(p, q) dependence to analyse a set of such data. A maximum likelihood estimation procedure for the proposed model is derived and future values are predicted, based on the best linear unbiased prediction. The paper compares the proposed model with a nonlinear degradation model from a prediction point of view. Forecasts of failure times with various data lengths in the sample are also compared.  相似文献   

11.
The issue of estimating usual nutrient intake distributions and prevalence of inadequate nutrient intakes is of interest in nutrition studies. Box–Cox transformations coupled with the normal distribution are usually employed for modeling nutrient intake data. When the data present highly asymmetric distribution or include outliers, this approach may lead to implausible estimates. Additionally, it does not allow interpretation of the parameters in terms of characteristics of the original data and requires back transformation of the transformed data to the original scale. This paper proposes an alternative approach for estimating usual nutrient intake distributions and prevalence of inadequate nutrient intakes through a Box–Cox t model with random intercept. The proposed model is flexible enough for modeling highly asymmetric data even when outliers are present. Unlike the usual approach, the proposed model does not require a transformation of the data. A simulation study suggests that the Box–Cox t model with random intercept estimates the usual intake distribution satisfactorily, and that it should be preferable to the usual approach particularly in cases of highly asymmetric heavy-tailed data. In applications to data sets on intake of 19 micronutrients, the Box–Cox t models provided better fit than its competitors in most of the cases.  相似文献   

12.
In this paper, we consider inferences in a binary dynamic mixed model. The existing estimation approaches mainly estimate the regression effects and the dynamic dependence parameters either through the estimation of the random effects or by avoiding the random effects technically. Under the assumption that the random effects follow a Gaussian distribution, we propose a generalized quasilikelihood (GQL) approach for the estimation of the parameters of the dynamic mixed models. The proposed approach is computationally less cumbersome than the exact maximum likelihood (ML) approach. We also carry out the GQL estimation under two competitive, namely, probit and logit mixed models, and discuss both the asymptotic and small-sample behaviour of their estimators.  相似文献   

13.
Random effects models have been playing a critical role for modelling longitudinal data. However, there are little studies on the kernel-based maximum likelihood method for semiparametric random effects models. In this paper, based on kernel and likelihood methods, we propose a pooled global maximum likelihood method for the partial linear random effects models. The pooled global maximum likelihood method employs the local approximations of the nonparametric function at a group of grid points simultaneously, instead of one point. Gaussian quadrature is used to approximate the integration of likelihood with respect to random effects. The asymptotic properties of the proposed estimators are rigorously studied. Simulation studies are conducted to demonstrate the performance of the proposed approach. We also apply the proposed method to analyse correlated medical costs in the Medical Expenditure Panel Survey data set.  相似文献   

14.
15.
This paper investigates on the problem of parameter estimation in statistical model when observations are intervals assumed to be related to underlying crisp realizations of a random sample. The proposed approach relies on the extension of likelihood function in interval setting. A maximum likelihood estimate of the parameter of interest may then be defined as a crisp value maximizing the generalized likelihood function. Using the expectation-maximization (EM) to solve such maximizing problem therefore derives the so-called interval-valued EM algorithm (IEM), which makes it possible to solve a wide range of statistical problems involving interval-valued data. To show the performance of IEM, the following two classical problems are illustrated: univariate normal mean and variance estimation from interval-valued samples, and multiple linear/nonlinear regression with crisp inputs and interval output.  相似文献   

16.
The paper presents an overview of maximum likelihood estimation using simulated likelihood, including the use of antithetic variables and evaluation of the simulation error of the resulting estimates. It gives a general purpose implementation of simulated maximum likelihood and uses it to re‐visit four models that have previously appeared in the published literature: a state–space model for count data; a nested random effects model for binomial data; a nonlinear growth model with crossed random effects; and a crossed random effects model for binary salamander‐mating data. In the case of the last three examples, this appears to be the first time that maximum likelihood fits of these models have been presented.  相似文献   

17.
In this article, small area estimation under a multivariate linear model for repeated measures data is considered. The proposed model aims to get a model which borrows strength both across small areas and over time. The model accounts for repeated surveys, grouped response units, and random effects variations. Estimation of model parameters is discussed within a likelihood based approach. Prediction of random effects, small area means across time points, and per group units are derived. A parametric bootstrap method is proposed for estimating the mean squared error of the predicted small area means. Results are supported by a simulation study.  相似文献   

18.
The objective of this paper is to present a method which can accommodate certain types of missing data by using the quasi-likelihood function for the complete data. This method can be useful when we can make first and second moment assumptions only; in addition, it can be helpful when the EM algorithm applied to the actual likelihood becomes overly complicated. First we derive a loss function for the observed data using an exponential family density which has the same mean and variance structure of the complete data. This loss function is the counterpart of the quasi-deviance for the observed data. Then the loss function is minimized using the EM algorithm. The use of the EM algorithm guarantees a decrease in the loss function at every iteration. When the observed data can be expressed as a deterministic linear transformation of the complete data, or when data are missing completely at random, the proposed method yields consistent estimators. Examples are given for overdispersed polytomous data, linear random effects models, and linear regression with missing covariates. Simulation results for the linear regression model with missing covariates show that the proposed estimates are more efficient than estimates based on completely observed units, even when outcomes are bimodal or skewed.  相似文献   

19.
Abstract. Continuous proportional outcomes are collected from many practical studies, where responses are confined within the unit interval (0,1). Utilizing Barndorff‐Nielsen and Jørgensen's simplex distribution, we propose a new type of generalized linear mixed‐effects model for longitudinal proportional data, where the expected value of proportion is directly modelled through a logit function of fixed and random effects. We establish statistical inference along the lines of Breslow and Clayton's penalized quasi‐likelihood (PQL) and restricted maximum likelihood (REML) in the proposed model. We derive the PQL/REML using the high‐order multivariate Laplace approximation, which gives satisfactory estimation of the model parameters. The proposed model and inference are illustrated by simulation studies and a data example. The simulation studies conclude that the fourth order approximate PQL/REML performs satisfactorily. The data example shows that Aitchison's technique of the normal linear mixed model for logit‐transformed proportional outcomes is not robust against outliers.  相似文献   

20.
Necessary and sufficient conditions for the existence of maximum likelihood estimators of unknown parameters in linear models with equi‐correlated random errors are presented. The basic technique we use is that these models are, first, orthogonally transformed into linear models with two variances, and then the maximum likelihood estimation problem is solved in the environment of transformed models. Our results generalize a result of Arnold, S. F. (1981) [The theory of linear models and multivariate analysis. Wiley, New York]. In addition, we give necessary and sufficient conditions for the existence of restricted maximum likelihood estimators of the parameters. The results of Birkes, D. & Wulff, S. (2003) [Existence of maximum likelihood estimates in normal variance‐components models. J Statist Plann. Inference. 113 , 35–47] are compared with our results and differences are pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号