首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The implementation of the Bayesian paradigm to model comparison can be problematic. In particular, prior distributions on the parameter space of each candidate model require special care. While it is well known that improper priors cannot be routinely used for Bayesian model comparison, we claim that also the use of proper conventional priors under each model should be regarded as suspicious, especially when comparing models having different dimensions. The basic idea is that priors should not be assigned separately under each model; rather they should be related across models, in order to acquire some degree of compatibility, and thus allow fairer and more robust comparisons. In this connection, the intrinsic prior as well as the expected posterior prior (EPP) methodology represent a useful tool. In this paper we develop a procedure based on EPP to perform Bayesian model comparison for discrete undirected decomposable graphical models, although our method could be adapted to deal also with directed acyclic graph models. We present two possible approaches. One based on imaginary data, and one which makes use of a limited number of actual data. The methodology is illustrated through the analysis of a 2×3×4 contingency table.  相似文献   

2.
While conjugate Bayesian inference in decomposable Gaussian graphical models is largely solved, the non-decomposable case still poses difficulties concerned with the specification of suitable priors and the evaluation of normalizing constants. In this paper we derive the DY-conjugate prior ( Diaconis & Ylvisaker, 1979 ) for non-decomposable models and show that it can be regarded as a generalization to an arbitrary graph G of the hyper inverse Wishart distribution ( Dawid & Lauritzen, 1993 ). In particular, if G is an incomplete prime graph it constitutes a non-trivial generalization of the inverse Wishart distribution. Inference based on marginal likelihood requires the evaluation of a normalizing constant and we propose an importance sampling algorithm for its computation. Examples of structural learning involving non-decomposable models are given. In order to deal efficiently with the set of all positive definite matrices with non-decomposable zero-pattern we introduce the operation of triangular completion of an incomplete triangular matrix. Such a device turns out to be extremely useful both in the proof of theoretical results and in the implementation of the Monte Carlo procedure.  相似文献   

3.
Abstract. We propose an objective Bayesian method for the comparison of all Gaussian directed acyclic graphical models defined on a given set of variables. The method, which is based on the notion of fractional Bayes factor (BF), requires a single default (typically improper) prior on the space of unconstrained covariance matrices, together with a prior sample size hyper‐parameter, which can be set to its minimal value. We show that our approach produces genuine BFs. The implied prior on the concentration matrix of any complete graph is a data‐dependent Wishart distribution, and this in turn guarantees that Markov equivalent graphs are scored with the same marginal likelihood. We specialize our results to the smaller class of Gaussian decomposable undirected graphical models and show that in this case they coincide with those recently obtained using limiting versions of hyper‐inverse Wishart distributions as priors on the graph‐constrained covariance matrices.  相似文献   

4.
Summary.  The application of certain Bayesian techniques, such as the Bayes factor and model averaging, requires the specification of prior distributions on the parameters of alternative models. We propose a new method for constructing compatible priors on the parameters of models nested in a given directed acyclic graph model, using a conditioning approach. We define a class of parameterizations that is consistent with the modular structure of the directed acyclic graph and derive a procedure, that is invariant within this class, which we name reference conditioning.  相似文献   

5.
The generalized lognormal distribution plays an important role in analysing data from different life testing experiments. In this paper, we consider Bayesian analysis of this distribution using various objective priors for the model parameters. Specifically, we derive expressions for the Jeffreys-type priors, the reference priors with different group orderings of the parameters, and the first-order matching priors. We also study the properties of the posterior distributions of the parameters under these improper priors. It is shown that only two of them result in proper posterior distributions. Numerical simulation studies are conducted to compare the performances of the Bayesian estimators under the considered priors and the maximum likelihood estimates. Finally, a real-data application is also provided for illustrative purposes.  相似文献   

6.
We present a Bayesian approach to estimating a covariance matrix by using a prior that is a mixture over all decomposable graphs, with the probability of each graph size specified by the user and graphs of equal size assigned equal probability. Most previous approaches assume that all graphs are equally probable. We show empirically that the prior that assigns equal probability over graph sizes outperforms the prior that assigns equal probability over all graphs in more efficiently estimating the covariance matrix. The prior requires knowing the number of decomposable graphs for each graph size and we give a simulation method for estimating these counts. We also present a Markov chain Monte Carlo method for estimating the posterior distribution of the covariance matrix that is much more efficient than current methods. Both the prior and the simulation method to evaluate the prior apply generally to any decomposable graphical model.  相似文献   

7.
In this article, we develop an empirical Bayesian approach for the Bayesian estimation of parameters in four bivariate exponential (BVE) distributions. We have opted for gamma distribution as a prior for the parameters of the model in which the hyper parameters have been estimated based on the method of moments and maximum likelihood estimates (MLEs). A simulation study was conducted to compute empirical Bayesian estimates of the parameters and their standard errors. We use moment estimators or MLEs to estimate the hyper parameters of the prior distributions. Furthermore, we compare the posterior mode of parameters obtained by different prior distributions and the Bayesian estimates based on gamma priors are very close to the true values as compared to improper priors. We use MCMC method to obtain the posterior mean and compared the same using the improper priors and the classical estimates, MLEs.  相似文献   

8.
We consider the problem of change-point detection in multivariate time-series. The multivariate distribution of the observations is supposed to follow a graphical model, whose graph and parameters are affected by abrupt changes throughout time. We demonstrate that it is possible to perform exact Bayesian inference whenever one considers a simple class of undirected graphs called spanning trees as possible structures. We are then able to integrate on the graph and segmentation spaces at the same time by combining classical dynamic programming with algebraic results pertaining to spanning trees. In particular, we show that quantities such as posterior distributions for change-points or posterior edge probabilities over time can efficiently be obtained. We illustrate our results on both synthetic and experimental data arising from biology and neuroscience.  相似文献   

9.
Abstract.  One of the main research areas in Bayesian Nonparametrics is the proposal and study of priors which generalize the Dirichlet process. In this paper, we provide a comprehensive Bayesian non-parametric analysis of random probabilities which are obtained by normalizing random measures with independent increments (NRMI). Special cases of these priors have already shown to be useful for statistical applications such as mixture models and species sampling problems. However, in order to fully exploit these priors, the derivation of the posterior distribution of NRMIs is crucial: here we achieve this goal and, indeed, provide explicit and tractable expressions suitable for practical implementation. The posterior distribution of an NRMI turns out to be a mixture with respect to the distribution of a specific latent variable. The analysis is completed by the derivation of the corresponding predictive distributions and by a thorough investigation of the marginal structure. These results allow to derive a generalized Blackwell–MacQueen sampling scheme, which is then adapted to cover also mixture models driven by general NRMIs.  相似文献   

10.
The Jeffreys-rule prior and the marginal independence Jeffreys prior are recently proposed in Fonseca et al. [Objective Bayesian analysis for the Student-t regression model, Biometrika 95 (2008), pp. 325–333] as objective priors for the Student-t regression model. The authors showed that the priors provide proper posterior distributions and perform favourably in parameter estimation. Motivated by a practical financial risk management application, we compare the performance of the two Jeffreys priors with other priors proposed in the literature in a problem of estimating high quantiles for the Student-t model with unknown degrees of freedom. Through an asymptotic analysis and a simulation study, we show that both Jeffreys priors perform better in using a specific quantile of the Bayesian predictive distribution to approximate the true quantile.  相似文献   

11.
In this article, the problem of parameter estimation and variable selection in the Tobit quantile regression model is considered. A Tobit quantile regression with the elastic net penalty from a Bayesian perspective is proposed. Independent gamma priors are put on the l1 norm penalty parameters. A novel aspect of the Bayesian elastic net Tobit quantile regression is to treat the hyperparameters of the gamma priors as unknowns and let the data estimate them along with other parameters. A Bayesian Tobit quantile regression with the adaptive elastic net penalty is also proposed. The Gibbs sampling computational technique is adapted to simulate the parameters from the posterior distributions. The proposed methods are demonstrated by both simulated and real data examples.  相似文献   

12.
The Bayesian CART (classification and regression tree) approach proposed by Chipman, George and McCulloch (1998) entails putting a prior distribution on the set of all CART models and then using stochastic search to select a model. The main thrust of this paper is to propose a new class of hierarchical priors which enhance the potential of this Bayesian approach. These priors indicate a preference for smooth local mean structure, resulting in tree models which shrink predictions from adjacent terminal node towards each other. Past methods for tree shrinkage have searched for trees without shrinking, and applied shrinkage to the identified tree only after the search. By using hierarchical priors in the stochastic search, the proposed method searches for shrunk trees that fit well and improves the tree through shrinkage of predictions.  相似文献   

13.
Learning classification trees   总被引:11,自引:0,他引:11  
Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. This paper outlines how a tree learning algorithm can be derived using Bayesian statistics. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule is similar to Quinlan's information gain, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach,c4 (Quinlanet al., 1987) andcart (Breimanet al., 1984), show that the full Bayesian algorithm can produce more accurate predictions than versions of these other approaches, though pays a computational price.  相似文献   

14.
Time-varying parameter models with stochastic volatility are widely used to study macroeconomic and financial data. These models are almost exclusively estimated using Bayesian methods. A common practice is to focus on prior distributions that themselves depend on relatively few hyperparameters such as the scaling factor for the prior covariance matrix of the residuals governing time variation in the parameters. The choice of these hyperparameters is crucial because their influence is sizeable for standard sample sizes. In this article, we treat the hyperparameters as part of a hierarchical model and propose a fast, tractable, easy-to-implement, and fully Bayesian approach to estimate those hyperparameters jointly with all other parameters in the model. We show via Monte Carlo simulations that, in this class of models, our approach can drastically improve on using fixed hyperparameters previously proposed in the literature. Supplementary materials for this article are available online.  相似文献   

15.
The choice of prior distributions for the variances can be important and quite difficult in Bayesian hierarchical and variance component models. For situations where little prior information is available, a ‘nonin-formative’ type prior is usually chosen. ‘Noninformative’ priors have been discussed by many authors and used in many contexts. However, care must be taken using these prior distributions as many are improper and thus, can lead to improper posterior distributions. Additionally, in small samples, these priors can be ‘informative’. In this paper, we investigate a proper ‘vague’ prior, the uniform shrinkage prior (Strawder-man 1971; Christiansen & Morris 1997). We discuss its properties and show how posterior distributions for common hierarchical models using this prior lead to proper posterior distributions. We also illustrate the attractive frequentist properties of this prior for a normal hierarchical model including testing and estimation. To conclude, we generalize this prior to the multivariate situation of a covariance matrix.  相似文献   

16.
Typically, in the brief discussion of Bayesian inferential methods presented at the beginning of calculus-based undergraduate or graduate mathematical statistics courses, little attention is paid to the process of choosing the parameter value(s) for the prior distribution. Even less attention is paid to the impact of these choices on the predictive distribution of the data. Reasons for this include that the posterior can be found by ignoring the predictive distribution thereby streamlining the derivation of the posterior and/or that computer software can be used to find the posterior distribution. In this paper, the binomial, negative-binomial and Poisson distributions along with their conjugate beta and gamma priors are utilized to obtain the resulting predictive distributions. It is then demonstrated that specific choices of the parameters of the priors can lead to predictive distributions with properties that might be surprising to a non-expert user of Bayesian methods.  相似文献   

17.
This paper surveys various shrinkage, smoothing and selection priors from a unifying perspective and shows how to combine them for Bayesian regularisation in the general class of structured additive regression models. As a common feature, all regularisation priors are conditionally Gaussian, given further parameters regularising model complexity. Hyperpriors for these parameters encourage shrinkage, smoothness or selection. It is shown that these regularisation (log-) priors can be interpreted as Bayesian analogues of several well-known frequentist penalty terms. Inference can be carried out with unified and computationally efficient MCMC schemes, estimating regularised regression coefficients and basis function coefficients simultaneously with complexity parameters and measuring uncertainty via corresponding marginal posteriors. For variable and function selection we discuss several variants of spike and slab priors which can also be cast into the framework of conditionally Gaussian priors. The performance of the Bayesian regularisation approaches is demonstrated in a hazard regression model and a high-dimensional geoadditive regression model.  相似文献   

18.
In this paper, we present a Bayesian analysis of double seasonal autoregressive moving average models. We first consider the problem of estimating unknown lagged errors in the moving average part using non linear least squares method, and then using natural conjugate and Jeffreys’ priors we approximate the marginal posterior distributions to be multivariate t and gamma distributions for the model coefficients and precision, respectively. We evaluate the proposed Bayesian methodology using simulation study, and apply to real-world hourly electricity load data sets.  相似文献   

19.
In this paper, we develop a matching prior for the product of means in several normal distributions with unrestricted means and unknown variances. For this problem, properly assigning priors for the product of normal means has been issued because of the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. We developed the first order probability matching priors for this problem; however, the developed matching priors are unproper. Thus, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that the derived matching prior performs better than the uniform prior and Jeffreys’ prior in meeting the target coverage probabilities, and meets well the target coverage probabilities even for the small sample sizes. In addition, to evaluate the validity of the proposed matching prior, Bayesian credible interval for the product of normal means using the matching prior is compared to Bayesian credible intervals using the uniform prior and Jeffrey’s prior, and the confidence interval using the method of Yfantis and Flatman.  相似文献   

20.
Most of the Bayesian literature on statistical techniques in auditing has focused on assessing appropriate prior density using parameters such as interest, error rate and the mean of the error amount. Frequently, prior beliefs and mathematical tractable reasons are jointly used to assess prior distributions. As a robust Bayesian approach, we propose to replace the prior distribution with a set of prior distributions compatible with auditor's beliefs. We show how an auditor may draw the behaviour of the posterior error rate, using only partial prior information (quartiles of the prior distribution for the error rate O and, very often, the prior distribution is assumed to be unimodal). An example is pursued in depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号