首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amount of radon in natural gas varies with its source. Little has been published about the radon from shale gas to date, making estimates of its impact on radon‐induced lung cancer speculative. We measured radon in natural gas pipelines carrying gas from the Marcellus Shale in Pennsylvania and West Virginia. Radon concentrations ranged from 1,520 to 2,750 Bq/m3 (41–74 pCi/L), and the throughput‐weighted average was 1,983 Bq/m3 (54 pCi/L). Potential radon exposure due to the use of Marcellus Shale gas for cooking and space heating using vent‐free heaters or gas ranges in northeastern U.S. homes and apartments was assessed. Though the measured radon concentrations are higher than what has been previously reported, it is unlikely that exposure from natural gas cooking would exceed 1.2 Bq/m3 (<1% of the U.S. Environmental Protection Agency's action level). Using worst‐case assumptions, we estimate the excess lifetime (70 years) lung cancer risk associated with cooking to be 1.8×10?4 (interval spanning 95% of simulation results: 8.5×10?5, 3.4×10?4). The risk profile for supplemental heating with unvented gas appliances is similar. Individuals using unvented gas appliances to provide primary heating may face lifetime risks as high as 3.9×10?3. Under current housing stock and gas consumption assumptions, expected levels of residential radon exposure due to unvented combustion of Marcellus Shale natural gas in the Northeast United States do not result in a detectable change in the lung cancer death rates.  相似文献   

2.
Although radon exposure has been identified as the second leading cause of lung cancer, fewer than 6% of U.S. homeowners test their homes for radon. This report examines participants'follow-up radon testing behavior subsequent to receiving an initial screening radon level greater than 20 pCi/L. Sixty-two participants in the Iowa State-Wide Rural Radon Screening Survey who had radon screening measurements over 20 pCi/L were questioned by phone survey 3 months after receipt of their radon screening result to assess: whether participants were aware of radon's health risk; if participants recalled the radon screening results; how participants perceived the relative health risk of radon and whether participants planned follow-up radon testing. Only 19% of the respondents specifically identified lung cancer as the possible adverse health outcome of high radon exposure, and the majority of participants underestimated the health risks high radon levels pose when compared to cigarettes and x-rays. In addition, less than one third (29%)of the participants actually remembered their radon screening level within 10 pCi/L 3 months after receiving their screening results. Only 53% of the individuals correctly interpreted their screening radon level as being in the high range, and only 39% of the participants planned follow-up radon measurements. Receipt of radon screening test results indicating high radon levels was not an adequate motivational factor in itself to stimulate further radon assessment or mitigation. Our findings suggest that free radon screening will not result in a dramatic increase in subsequent homeowner initiated remediation or further recommended radon testing.  相似文献   

3.
A recent report by the National Academy of Sciences estimates that the radiation dose to the bronchial epithelium, per working level month (WLM) of radon daughter exposure, is about 30% lower for residential exposures than for exposures received in underground mines. Adjusting the previously published BEIR IV radon risk model accordingly, the unit risk for indoor exposures of the general population is about 2.2 x 10(-4) lung cancer deaths (lcd)/WLM. Using results from EPA's National Residential Radon Survey, the average radon level is estimated to be about 1.25 pCi/L, and the annual average exposure about 0.242 WLM. Based on these estimates, 13,600 radon-induced lcd/yr are projected for the United States. A quantitative uncertainty analysis was performed, which considers: statistical uncertainties in the epidemiological studies of radon-exposed miners; the dependence of risk on age at, and time since, exposure; the extrapolation of risk estimates from mines to homes based on comparative dosimetry; and uncertainties in the radon daughter levels in homes and in the average residential occupancy. Based on this assessment of the uncertainties in the unit risk and exposure estimates, an uncertainty range of 7000-30000 lcd/yr is derived.  相似文献   

4.
Two-year chronic bioassays were conducted by using B6C3F1 female mice fed several concentrations of two different mixtures of coal tars from manufactured gas waste sites or benzo(a)pyrene (BaP). The purpose of the study was to obtain estimates of cancer potency of coal tar mixtures, by using conventional regulatory methods, for use in manufactured gas waste site remediation. A secondary purpose was to investigate the validity of using the concentration of a single potent carcinogen, in this case benzo(a)pyrene, to estimate the relative risk for a coal tar mixture. The study has shown that BaP dominates the cancer risk when its concentration is greater than 6,300 ppm in the coal tar mixture. In this case the most sensitive tissue site is the forestomach. Using low-dose linear extrapolation, the lifetime cancer risk for humans is estimated to be: Risk < 1.03 x 10(-4) (ppm coal tar in total diet) + 240 x 10(-4) (ppm BaP in total diet), based on forestomach tumors. If the BaP concentration in the coal tar mixture is less than 6,300 ppm, the more likely case, then lung tumors provide the largest estimated upper limit of risk, Risk < 2.55 x 10(-4) (ppm coal tar in total diet), with no contribution of BaP to lung tumors. The upper limit of the cancer potency (slope factor) for lifetime oral exposure to benzo(a)pyrene is 1.2 x 10(-3) per microgram per kg body weight per day from this Good Laboratory Practice (GLP) study compared with the current value of 7.3 x 10(-3) per microgram per kg body weight per day listed in the U.S. EPA Integrated Risk Information System.  相似文献   

5.
Trichloroethylene (TCE) is a widespread environmental pollutant. TCE is classified as a rodent carcinogen by the U.S. Environmental Protection Agency (EPA). Using the rodent cancer bioassay findings and estimates of metabolized dose, the EPA has estimated lifetime exposure cancer risks for humans that ingest TCE in drinking water or inhale TCE. In this study, a physiologically based pharmacokinetic (PB-PK) model for mice was used to simulate selected gavage and inhalation bioassays with TCE. Plausible dose-metrics thought to be linked with the mechanism of action for TCE carcinogenesis were selected. These dose-metrics, adjusted to reflect an average amount per day for a lifetime, were metabolism of TCE (AMET, mg/kg/day) and systemic concentration of TCA (AUCTCA, mg/L/day). These dose-metrics were then used in a linearized multistage model to estimate AMET and AUCTCA values that correspond to liver cancer risks of 1 in 1 million in mice. A human PB-PK model for TCE was then used to predict TCE concentrations in drinking water and air that would provide AMET and AUCTCA values equal to the predicted mice AMET and AUCTCA values that correspond to liver cancer risks of 1 in 1 million. For the dose-metrics, AMET and AUCTCA, the TCE concentrations in air were 10.0 and 0.1 ppb TCE (continuous exposure), respectively, and in water, 7 and 4 μg TCE/L, respectively.  相似文献   

6.
Following a comprehensive evaluation of the health risks of radon, the U.S. National Research Council (US-NRC) concluded that the radon inside the homes of U.S. residents is an important cause of lung cancer. To assess lung cancer risks associated with radon exposure in Canadian homes, we apply the new (US-NRC) techniques, tailoring assumptions to the Canadian context. A two-dimensional uncertainty analysis is used to provide both population-based (population attributable risk, PAR; excess lifetime risk ratio, ELRR; and life-years lost, LYL) and individual-based (ELRR and LYL) estimates. Our primary results obtained for the Canadian population reveal mean estimates for ELRR, PAR, and LYL are 0.08, 8%, and 0.10 years, respectively. Results are also available and stratified by smoking status (ever versus never). Conveniently, the three indices (ELRR, PAR, and LYL) reveal similar output uncertainty (geometric standard deviation, GSD approximately 1.3), and in the case of ELRR and LYL, comparable variability and uncertainty combined (GSD approximately 4.2). Simplifying relationships are identified between ELRR, LYL, PAR, and the age-specific excess rate ratio (ERR), which suggest a way to scale results from one population to another. This insight is applied in scaling our baseline results to obtain gender-specific estimates, as well as in simplifying and illuminating sensitivity analysis.  相似文献   

7.
Two-year chronic bioassays were conducted by using B6C3F1 female mice fed several concentrations of two different mixtures of coal tars from manufactured gas waste sites or benzo(a)pyrene (BaP). The purpose of the study was to obtain estimates of cancer potency of coal tar mixtures, by using conventional regulatory methods, for use in manufactured gas waste site remediation. A secondary purpose was to investigate the validity of using the concentration of a single potent carcinogen, in this case benzo(a)pyrene, to estimate the relative risk for a coal tar mixture. The study has shown that BaP dominates the cancer risk when its concentration is greater than 6,300 ppm in the coal tar mixture. In this case the most sensitive tissue site is the forestomach. Using low-dose linear extrapolation, the lifetime cancer risk for humans is estimated to be: Risk < 1.03 × 10−4 (ppm coal tar in total diet) + 240 × 10−4 (ppm BaP in total diet), based on forestomach tumors. If the BaP concentration in the coal tar mixture is less than 6,300 ppm, the more likely case, then lung tumors provide the largest estimated upper limit of risk, Risk < 2.55 × 10−4 (ppm coal tar in total diet), with no contribution of BaP to lung tumors. The upper limit of the cancer potency (slope factor) for lifetime oral exposure to benzo(a)pyrene is 1.2 × 10−3 per μg per kg body weight per day from this Good Laboratory Practice (GLP) study compared with the current value of 7.3 × 10−3 per μg per kg body weight per day listed in the U.S. EPA Integrated Risk Information System.  相似文献   

8.
A review of epidemiology literature revealed that only studies conducted in Africa and Asia included data adequate to permit quantitative assessment of the dose-response relationship between aflatoxin exposure levels and liver cancer rates. Although these studies were judged adequate, their direct use to predict risks in U.S. populations may be questioned since hepatitis B virus (HBV) infections are far more common in the studied areas than in the U.S. Recent research indicates that, if aflatoxin contributes to the development of liver cancer, it almost always does so in the presence of HBV infection. The African/Asian data do not permit us to estimate the potency of aflatoxin in the absence of HBV. Recognizing this, these data can only be used to establish upper limits for the predicted excess lifetime risk for liver cancer in the U.S. When used in conjunction with aflatoxin exposure estimates for the Southeast U.S., these data predict a liver cancer rate, due to aflatoxin alone, far above that actually observed due to all causes; this provides an indication of the conservatism of this approach. Data from the Southeast U.S. may be used to estimate an excess lifetime risk for liver cancer of 2.17 x 10(-6) x (aflatoxin intake, ng/kg/day).  相似文献   

9.
Skin Cancer and Inorganic Arsenic: Uncertainty-Status of Risk   总被引:5,自引:0,他引:5  
The current U.S. EPA standard for inorganic arsenic in drinking water is 50 ppb (μg/L), dating to the National Interim Primary Drinking Water Regulation of 1976. The current EPA risk analysis predicts an increased lifetime skin cancer risk on the order of 3 or 4 per 1000 from chronic exposure at that concentration. Revision of the standard to only a few ppb, perhaps even less than 1 ppb, may be indicated by the EPA analysis to reduce the lifetime risk to an acceptable level. The cost to water utilities, and ultimately to their consumers, to conform to such a large reduction in the standard could easily reach several billion dollars, so it is particularly important to assess accurately the current risk and the risk reduction that would be achieved by a lower standard. This article addresses the major sources of uncertainty in the EPA analysis with respect to this objective. Specifically, it focuses on uncertainty and variability in the exposure estimates for the landmark study of Tseng and colleagues in Taiwan, analyzed using a reconstruction of the their exposure data. It is concluded that while the available dataset is suitable to establish the hazard of skin cancer, it is too highly summarized for reliable dose-response assessment. A new epidemiologic study is needed, designed for the requirements of dose-response assessment.  相似文献   

10.
A study of the prevalence of skin cancer among 40,421 persons consuming arsenic-contaminated drinking water in Taiwan was used for a cancer dose-response assessment of ingested arsenic. The numbers of persons at risk over three dose intervals and four exposure durations were estimated from the data in order to apply the method of maximum likelihood to a multistage-Weibull time/dose-response model. A constant exposure level since birth for each of the exposure categories was assumed. It was found that the cumulative hazard increases as a power of three in age, and is linear or quadratic (with a linear coefficient) in dose. Observations from a smaller epidemiologic survey in Mexico were similar to what would be predicted from the model of the Taiwan data. Assuming that the skin cancer risk from ingested arsenic in the American population would also be similar to the Taiwan population, an American male would have a lifetime risk of developing skin cancer of 1.3 x 10(-3) (3.0 x 10(-3] if exposed to 1 microgram/kg/day for a 76-year lifespan (median lifespan in the U.S.).  相似文献   

11.
The leaching of organotin (OT) heat stabilizers from polyvinyl chloride (PVC) pipes used in residential drinking water systems may affect the quality of drinking water. These OTs, principally mono- and di-substituted species of butyltins and methyltins, are a potential health concern because they belong to a broad class of compounds that may be immune, nervous, and reproductive system toxicants. In this article, we develop probability distributions of U.S. population exposures to mixtures of OTs encountered in drinking water transported by PVC pipes. We employed a family of mathematical models to estimate OT leaching rates from PVC pipe as a function of both surface area and time. We then integrated the distribution of estimated leaching rates into an exposure model that estimated the probability distribution of OT concentrations in tap waters and the resulting potential human OT exposures via tap water consumption. Our study results suggest that human OT exposures through tap water consumption are likely to be considerably lower than the World Health Organization (WHO) "safe" long-term concentration in drinking water (150 μg/L) for dibutyltin (DBT)—the most toxic of the OT considered in this article. The 90th percentile average daily dose (ADD) estimate of 0.034 ± 2.92 × 10−4μg/kg day is approximately 120 times lower than the WHO-based ADD for DBT (4.2 μg/kg day).  相似文献   

12.
Helicobacter pylori is a microaerophilic, gram‐negative bacterium that is linked to adverse health effects including ulcers and gastrointestinal cancers. The goal of this analysis is to develop the necessary inputs for a quantitative microbial risk assessment (QMRA) needed to develop a potential guideline for drinking water at the point of ingestion (e.g., a maximum contaminant level, or MCL) that would be protective of human health to an acceptable level of risk while considering sources of uncertainty. Using infection and gastric cancer as two discrete endpoints, and calculating dose‐response relationships from experimental data on humans and monkeys, we perform both a forward and reverse risk assessment to determine the risk from current reported surface water concentrations of H. pylori and an acceptable concentration of H. pylori at the point of ingestion. This approach represents a synthesis of available information on human exposure to H. pylori via drinking water. A lifetime risk of cancer model suggests that a MCL be set at <1 organism/L given a 5‐log removal treatment because we cannot exclude the possibility that current levels of H. pylori in environmental source waters pose a potential public health risk. Research gaps include pathogen occurrence in source and finished water, treatment removal rates, and determination of H. pylori risks from other water sources such as groundwater and recreational water.  相似文献   

13.
Exposure to Chlorination By-Products from Hot Water Uses   总被引:2,自引:0,他引:2  
Exposures to chlorination by-products (CBP) within public water supplies are multiroute in water. Cold water is primarily used for ingestion while a mixture of cold water and hot water is used for showering, bathing others, dish washing, etc. These latter two activities result in inhalation and dermal exposure. Heating water was observed to change the concentration of various CBP. An increase in the trihalomethanes (THM) concentrations and a decrease in the haloacetonitriles and halopropanones concentration, though an initial rise in the concentration of dichloropropanone, were observed. The extent of the increase in the THM is dependent on the chlorine residual present. Therefore, estimates of total exposure to CBP from public water supplies need to consider any changes in their concentration with different water uses. The overall THM exposures calculated using the THM concentration in heated water were 50% higher than those calculated using the THM concentration present in cold water. The estimated lifetime cancer risk associated with exposure to THM in water during the shower is therefore underestimated by 50% if the concentration of THM in cold water is used in the risk assessment.  相似文献   

14.
In their regulations, the U.S. Environmental Protection Agency and the U.S. Nuclear Regulatory Commission permit the omission of features, events, or processes with probabilities of <10(-4) in 10(4) yr (e.g., a constant frequency of <10(-8) per yr) in assessments of the performance of radioactive waste disposal systems. Igneous intrusion (or "volcanism") of a geologic repository at Yucca Mountain for radioactive waste is one disruptive event that has a probability with a range of uncertainty that straddles this regulatory criterion and is considered directly in performance assessment calculations. A self-sustained nuclear chain reaction (or "criticality") is another potentially disruptive event to consider, although it was never found to be important when evaluating the efficacy of radioactive waste disposal since the early 1970s. The thesis of this article is that the consideration of the joint event--volcanism and criticality--occurring in any 10,000-year period following closure can be eliminated from performance calculations at Yucca Mountain. The probability of the joint event must be less than the fairly well-accepted but low probability of volcanism. Furthermore, volcanism does not "remove" or "fail" existing hydrologic or geochemical constraints at Yucca Mountain that tend to prevent concentration of fissile material. Prior to general corrosion failure of waste packages, the mean release of fissile mass caused by a low-probability, igneous intrusive event is so small that the probability of a critical event is remote, even for highly enriched spent nuclear fuel owned by the U.S. Department of Energy. After widespread failure of packages occurs, the probability of the joint event is less than the probability of criticality because of the very small influence of volcanism on the mean fissile mass release. Hence, volcanism plays an insignificant role in inducing criticality over any 10(4)-yr period. We also argue that the Oklo reactors serve as a natural analogue and provide a rough bound on probability of criticality given favorable hydrologic or geochemical conditions on the scale of the repository that is less than 0.10. Because the product of this bound with the probability of volcanism represents the probability of the joint event and the product is less than 10(-4) in 10(4) yr, consideration of the joint event can be eliminated from performance calculations.  相似文献   

15.
A Monte Carlo simulation is incorporated into a risk assessment for trichloroethylene (TCE) using physiologically-based pharmacokinetic (PBPK) modeling coupled with the linearized multistage model to derive human carcinogenic risk extrapolations. The Monte Carlo technique incorporates physiological parameter variability to produce a statistically derived range of risk estimates which quantifies specific uncertainties associated with PBPK risk assessment approaches. Both inhalation and ingestion exposure routes are addressed. Simulated exposure scenarios were consistent with those used by the Environmental Protection Agency (EPA) in their TCE risk assessment. Mean values of physiological parameters were gathered from the literature for both mice (carcinogenic bioassay subjects) and for humans. Realistic physiological value distributions were assumed using existing data on variability. Mouse cancer bioassay data were correlated to total TCE metabolized and area-under-the-curve (blood concentration) trichloroacetic acid (TCA) as determined by a mouse PBPK model. These internal dose metrics were used in a linearized multistage model analysis to determine dose metric values corresponding to 10-6 lifetime excess cancer risk. Using a human PBPK model, these metabolized doses were then extrapolated to equivalent human exposures (inhalation and ingestion). The Monte Carlo iterations with varying mouse and human physiological parameters produced a range of human exposure concentrations producing a 10-6 risk.  相似文献   

16.
The presence of environmental tobacco smoke (ETS) in homes has been implicated in the causation of lung cancer. While of interest in its own right, ETS also influences the risk imposed by radon and its decay products. The interaction between radon progeny and ETS alters the exposure, intake, uptake, biokinetics, dosimetry, and radiobiology of those progeny. The present paper details model predictions of the various influences of ETS on these factors in the U.S. population and provides estimates of the resulting change in the risk from average levels of radon progeny. It is predicted that the presence of ETS produces a very small (perhaps unmeasurable) increase in the risk of radiation-induced tracheobronchial cancer in homes with initially very high particle concentrations for both active and never-smokers, but significantly lowers the risk in homes with initially lower particle concentrations for both groups when generation 4 of the lung is considered the target site. For generation 16, the presence of ETS generally increases the radon-induced risk of lung cancer, although the increase should be unmeasurable at high initial particle concentrations. The net effect of ETS on human health is suggested to be a complicated function of the initial housing conditions, the concentration of particles introduced by smoking, the target generation considered, and the smoking status of exposed populations. This situation precludes any simple statements concerning the role of ETS in governing the incidence of lung cancer in a population.  相似文献   

17.
The probability of illness caused by very low doses of pathogens cannot generally be tested due to the numbers of subjects that would be needed, though such assessments of illness dose response are needed to evaluate drinking water standards. A predictive Bayesian dose-response assessment method was proposed previously to assess the unconditional probability of illness from available information and avoid the inconsistencies of confidence-based approaches. However, the method uses knowledge of the conditional dose-response form, and this form is not well established for the illness endpoint. A conditional parametric dose-response function for gastroenteric illness is proposed here based on simple numerical models of self-organized host-pathogen systems and probabilistic arguments. In the models, illnesses terminate when the host evolves by processes of natural selection to a self-organized critical value of wellness. A generalized beta-Poisson illness dose-response form emerges for the population as a whole. Use of this form is demonstrated in a predictive Bayesian dose-response assessment for cryptosporidiosis. Results suggest that a maximum allowable dose of 5.0 x 10(-7) oocysts/exposure (e.g., 2.5 x 10(-7) oocysts/L water) would correspond with the original goals of the U.S. Environmental Protection Agency Surface Water Treatment Rule, considering only primary illnesses resulting from Poisson-distributed pathogen counts. This estimate should be revised to account for non-Poisson distributions of Cryptosporidium parvum in drinking water and total response, considering secondary illness propagation in the population.  相似文献   

18.
Recently, showers have been suspected to be an important source of indoor exposure to volatile organic compounds (VOC). The chloroform dose to an individual from showering was determined based on exhaled breath analysis. The postexposure chloroform breath concentration ranged from 6.0-21 micrograms/m3, while all corresponding background breath concentrations were less than 0.86 micrograms/m3. The internal dose from showering (inhalation plus dermal) was comparable to estimates of the dose from daily water ingestion. The risk associated with a single, 10-min shower was estimated to be 1.22 x 10(-4), while the estimated risk from daily ingestion of tap water ranged from 0.130 x 10(-4) to 1.80 x 10(-4) for 0.15 and 2.0 L, respectively. Since the estimates of chloroform risk from domestic water use for the three exposure routes--ingestion, inhalation, and dermal--are similar, all routes must be used to calculate the total risk when making policy decisions regarding the quality of the municipal water supply.  相似文献   

19.
The purpose of this investigation was to estimate excess lifetime risk of lung cancer death resulting from occupational exposure to hexavalent-chromium-containing dusts and mists. The mortality experience in a previously studied cohort of 2,357 chromate chemical production workers with 122 lung cancer deaths was analyzed with Poisson regression methods. Extensive records of air samples evaluated for water-soluble total hexavalent chromium were available for the entire employment history of this cohort. Six different models of exposure-response for hexavalent chromium were evaluated by comparing deviances and inspection of cubic splines. Smoking (pack-years) imputed from cigarette use at hire was included in the model. Lifetime risks of lung cancer death from exposure to hexavalent chromium (assuming up to 45 years of exposure) were estimated using an actuarial calculation that accounts for competing causes of death. A linear relative rate model gave a good and readily interpretable fit to the data. The estimated rate ratio for 1 mg/m3-yr of cumulative exposure to hexavalent chromium (as CrO3), with a lag of five years, was RR=2.44 (95% CI=1.54-3.83). The excess lifetime risk of lung cancer death from exposure to hexavalent chromium at the current OSHA permissible exposure limit (PEL) (0.10 mg/m3) was estimated to be 255 per 1,000 (95% CI: 109-416). This estimate is comparable to previous estimates by U.S. EPA, California EPA, and OSHA using different occupational data. Our analysis predicts that current occupational standards for hexavalent chromium permit a lifetime excess risk of dying of lung cancer that exceeds 1 in 10, which is consistent with previous risk assessments.  相似文献   

20.
Environmental tobacco smoke (ETS)has recently been determined by U.S. environmental and occupational health authorities to be a human carcinogen. We develop a model which permits using atmospheric nicotine measurements to estimate nonsmokers’ETS lung cancer risks in individual workplaces for the first time. We estimate that during the 1980s, the U.S. nonsmoking adult population's median nicotine lung exposure (homes and workplaces combined)was 143 micrograms (μg)of nicotine daily, and that most-exposed adult nonsmokers inhaled 1430 μg/day. These exposure estimates are validated by pharmacokinetic modeling which yields the corresponding steady-state dose of the nicotine metabolite, cotinine. For U.S. adult nonsmokers of working age, we estimate median cotinine values of about 1.0 nanogram per milliliter (ng/ml)in plasma, and 6.2 ng/ml in urine; for most-exposed nonsmokers, we estimate cotinine concentrations of about 10 ng/ml in plasma and 62 ng/ml in urine. These values are consistent to within 15% of the cotinine values observed in contemporaneous clinical epidemiological studies. Corresponding median risk from ETS exposure in U.S. nonsmokers during the 1980s is estimated at about two lung cancer deaths (LCDs)per 1000 at risk, and for most-exposed nonsmokers, about two LCDs per 100. Risks abroad appear similar. Modeling of the lung cancer mortality risk from passive smoking suggests that de minimis [i.e., “acceptable” (10-6)], risk occurs at an 8-hr time-weighted-average exposure concentration of 7.5 nanograms of ETS nicotine per cubic meter of workplace air for a working lifetime of 40 years. This model is based upon a linear exposure-response relationship validated by physical, clinical, and epidemiological data. From available data, it appears that workplaces without effective smoking policies considerably exceed this de minimis risk standard. For a substantial fraction of the 59 million nonsmoking workers in the U.S., current workplace exposure to ETS also appears to pose risks exceeding the de manifestos risk level above which carcinogens are strictly regulated by the federal government.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号