首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For k??1 an integer, a set S of vertices in a graph G with minimum degree at least?k is a k-tuple total dominating set of G if every vertex of G is adjacent to at least k vertices in S. The minimum cardinality of a k-tuple total dominating set of G is the k-tuple total domination number of G. When k=1, the k-tuple total domination number is the well-studied total domination number. In this paper, we establish upper and lower bounds on the k-tuple total domination number of the cross product graph G×H for any two graphs G and H with minimum degree at least?k. In particular, we determine the exact value of the k-tuple total domination number of the cross product of two complete graphs.  相似文献   

2.
In the minimum weighted dominating set problem (MWDS), we are given a unit disk graph with non-negative weight on each vertex. The MWDS seeks a subset of the vertices of the graph with minimum total weight such that each vertex of the graph is either in the subset or adjacent to some nodes in the subset. A?weight function is called smooth, if the ratio of the weights of any two adjacent nodes is upper bounded by a constant. MWDS is known to be NP-hard. In this paper, we give the first polynomial time approximation scheme (PTAS) for MWDS with smooth weights on unit disk graphs, which achieves a (1+ε)-approximation for MWDS, for any ε>0.  相似文献   

3.
A set D?V of a graph G=(V,E) is a dominating set of G if every vertex in V?D has at least one neighbor in D. A dominating set D of G is a paired-dominating set of G if the induced subgraph, G[D], has a perfect matching. Given a graph G=(V,E) and a positive integer k, the paired-domination problem is to decide whether G has a paired-dominating set of cardinality at most k. The paired-domination problem is known to be NP-complete for bipartite graphs. In this paper, we, first, strengthen this complexity result by showing that the paired-domination problem is NP-complete for perfect elimination bipartite graphs. We, then, propose a linear time algorithm to compute a minimum paired-dominating set of a chordal bipartite graph, a well studied subclass of bipartite graphs.  相似文献   

4.
We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph G is a set S of vertices such that each vertex is either in S or has a neighbour in S. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions s and t such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of k, we consider properties of \(D_k(G)\), the graph consisting of a node for each dominating set of size at most k and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that \(D_{\varGamma (G)+1}(G)\) is not necessarily connected, for \(\varGamma (G)\) the maximum cardinality of a minimal dominating set in G. The result holds even when graphs are constrained to be planar, of bounded tree-width, or b-partite for \(b \ge 3\). Moreover, we construct an infinite family of graphs such that \(D_{\gamma (G)+1}(G)\) has exponential diameter, for \(\gamma (G)\) the minimum size of a dominating set. On the positive side, we show that \(D_{n-\mu }(G)\) is connected and of linear diameter for any graph G on n vertices with a matching of size at least \(\mu +1\).  相似文献   

5.
In a graph \(G=(V,E)\), a set \(D \subseteq V\) is said to be a dominating set of G if for every vertex \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\). A secure dominating set of the graph G is a dominating set D of G such that for every \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\) and \((D{\setminus }\{v\})\cup \{u\}\) is a dominating set of G. Given a graph G and a positive integer k, the secure domination problem is to decide whether G has a secure dominating set of cardinality at most k. The secure domination problem has been shown to be NP-complete for chordal graphs via split graphs and for bipartite graphs. In Liu et al. (in: Proceedings of 27th workshop on combinatorial mathematics and computation theory, 2010), it is asked to find a polynomial time algorithm for computing a minimum secure dominating set in a block graph. In this paper, we answer this by presenting a linear time algorithm to compute a minimum secure dominating set in block graphs. We then strengthen the known NP-completeness of the secure domination problem by showing that the secure domination problem is NP-complete for undirected path graphs and chordal bipartite graphs.  相似文献   

6.
In this paper, we initiate the study of total liar’s domination of a graph. A subset L?V of a graph G=(V,E) is called a total liar’s dominating set of G if (i) for all vV, |N G (v)∩L|≥2 and (ii) for every pair u,vV of distinct vertices, |(N G (u)∪N G (v))∩L|≥3. The total liar’s domination number of a graph G is the cardinality of a minimum total liar’s dominating set of G and is denoted by γ TLR (G). The Minimum Total Liar’s Domination Problem is to find a total liar’s dominating set of minimum cardinality of the input graph G. Given a graph G and a positive integer k, the Total Liar’s Domination Decision Problem is to check whether G has a total liar’s dominating set of cardinality at most k. In this paper, we give a necessary and sufficient condition for the existence of a total liar’s dominating set in a graph. We show that the Total Liar’s Domination Decision Problem is NP-complete for general graphs and is NP-complete even for split graphs and hence for chordal graphs. We also propose a 2(lnΔ(G)+1)-approximation algorithm for the Minimum Total Liar’s Domination Problem, where Δ(G) is the maximum degree of the input graph G. We show that Minimum Total Liar’s Domination Problem cannot be approximated within a factor of $(\frac{1}{8}-\epsilon)\ln(|V|)$ for any ?>0, unless NP?DTIME(|V|loglog|V|). Finally, we show that Minimum Total Liar’s Domination Problem is APX-complete for graphs with bounded degree 4.  相似文献   

7.
Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a k -distance paired dominating set of G if D is a k-distance dominating set of G and the induced subgraph 〈D〉 has a perfect matching. The minimum cardinality of a k-distance paired dominating set for graph G is the k -distance paired domination number, denoted by γ p k (G). In this paper, we determine the exact k-distance paired domination number of generalized Petersen graphs P(n,1) and P(n,2) for all k≥1.  相似文献   

8.

The minimum dominating set of graph has been widely used in many fields, but its solution is NP-hard. The complexity and approximation accuracy of existing algorithms need to be improved. In this paper, we introduce rough set theory to solve the dominating set of undirected graph. First, the adjacency matrix of undirected graph is used to establish an induced decision table, and the minimum dominating set of undirected graph is equivalent to the minimum attribute reduction of its induced decision table. Second, based on rough set theory, the significance of attributes (i.e., vertices) based on the approximate quality is defined in induced decision table, and a heuristic approximation algorithm of minimum dominating set is designed by using the significance of attributes (i.e., vertices) as heuristic information. This algorithm uses forward and backward search mechanism, which not only ensures to find a minimal dominating set, but also improves the approximation accuracy of minimum dominating set. In addition, a cumulative strategy is used to calculate the positive region of induced decision table, which effectively reduces the computational complexity. Finally, the experimental results on public datasets show that our algorithm has obvious advantages in running time and approximation accuracy of the minimum dominating set.

  相似文献   

9.
A vertex in G is said to dominate itself and its neighbors. A subset S of vertices is a dominating set if S dominates every vertex of G. A paired-dominating set is a dominating set whose induced subgraph contains a perfect matching. The paired-domination number of a graph G, denoted by γ pr(G), is the minimum cardinality of a paired-dominating set in G. A subset S?V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number γ ×2(G). A claw-free graph is a graph that does not contain K 1,3 as an induced subgraph. Chellali and Haynes (Util. Math. 67:161–171, 2005) showed that for every claw-free graph G, we have γ pr(G)≤γ ×2(G). In this paper we extend this result by showing that for r≥2, if G is a connected graph that does not contain K 1,r as an induced subgraph, then $\gamma_{\mathrm{pr}}(G)\le ( \frac{2r^{2}-6r+6}{r(r-1)} )\gamma_{\times2}(G)$ .  相似文献   

10.
For a graph G with vertex set V and edge set E, a (k,k′)-total list assignment L of G assigns to each vertex v a set L(v) of k real numbers as permissible weights, and assigns to each edge e a set L(e) of k′ real numbers as permissible weights. If for any (k,k′)-total list assignment L of G, there exists a mapping f:VE→? such that f(y)∈L(y) for each yVE, and for any two adjacent vertices u and v, ∑ yN(u) f(uy)+f(u)≠∑ xN(v) f(vx)+f(v), then G is (k,k′)-total weight choosable. It is conjectured by Wong and Zhu that every graph is (2,2)-total weight choosable, and every graph with no isolated edges is (1,3)-total weight choosable. In this paper, it is proven that a graph G obtained from any loopless graph H by subdividing each edge with at least one vertex is (1,3)-total weight choosable and (2,2)-total weight choosable. It is shown that s-degenerate graphs (with s≥2) are (1,2s)-total weight choosable. Hence planar graphs are (1,10)-total weight choosable, and outerplanar graphs are (1,4)-total weight choosable. We also give a combinatorial proof that wheels are (2,2)-total weight choosable, as well as (1,3)-total weight choosable.  相似文献   

11.
In this paper, we study the parameterized complexity of Dominating Set problem in chordal graphs and near chordal graphs. We show the problem is W[2]-hard and cannot be solved in time n o(k) in chordal and s-chordal (s>3) graphs unless W[1]=FPT. In addition, we obtain inapproximability results for computing a minimum dominating set in chordal and near chordal graphs. Our results prove that unless NP=P, the minimum dominating set in a chordal or s-chordal (s>3) graph cannot be approximated within a ratio of \fracc3lnn\frac{c}{3}\ln{n} in polynomial time, where n is the number of vertices in the graph and 0<c<1 is the constant from the inapproximability of the minimum dominating set in general graphs. In other words, our results suggest that restricting to chordal or s-chordal graphs can improve the approximation ratio by no more than a factor of 3. We then extend our techniques to find similar results for the Independent Dominating Set problem and the Connected Dominating Set problem in chordal or near chordal graphs.  相似文献   

12.
This paper presents a (10+ε)-approximation algorithm to compute minimum-weight connected dominating set (MWCDS) in unit disk graph. MWCDS is to select a vertex subset with minimum weight for a given unit disk graph, such that each vertex of the graph is contained in this subset or has a neighbor in this subset. Besides, the subgraph induced by this vertex subset is connected. Our algorithm is composed of two phases: the first phase computes a dominating set, which has approximation ratio 6+ε (ε is an arbitrary positive number), while the second phase connects the dominating sets computed in the first phase, which has approximation ratio 4. This work is supported in part by National Science Foundation under grant CCF-9208913 and CCF-0728851; and also supported by NSFC (60603003) and XJEDU.  相似文献   

13.
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (\({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\)). We prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {NP}\)-hard on planar bipartite graphs of maximum degree 4. We also prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {APX}\)-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) on bipartite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complexity of computing this graph parameter. On the positive side, we show an approximation algorithm for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\). Finally, when \(k=1\), we present two new approximation algorithms for the weighted version of the problem restricted to graphs with a polynomially bounded number of minimal separators.  相似文献   

14.
For a fixed integer \(b>1\), a set \(D\subseteq V\) is called a b-disjunctive dominating set of the graph \(G=(V,E)\) if for every vertex \(v\in V{\setminus }D\), v is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The Minimum b-Disjunctive Domination Problem (MbDDP) is to find a b-disjunctive dominating set of minimum cardinality. The cardinality of a minimum b-disjunctive dominating set of G is called the b-disjunctive domination number of G, and is denoted by \(\gamma _{b}^{d}(G)\). Given a positive integer k and a graph G, the b-Disjunctive Domination Decision Problem (bDDDP) is to decide whether G has a b-disjunctive dominating set of cardinality at most k. In this paper, we first show that for a proper interval graph G, \(\gamma _{b}^{d}(G)\) is equal to \(\gamma (G)\), the domination number of G for \(b \ge 3\) and observe that \(\gamma _{b}^{d}(G)\) need not be equal to \(\gamma (G)\) for \(b=2\). We then propose a polynomial time algorithm to compute a minimum cardinality b-disjunctive dominating set of a proper interval graph for \(b=2\). Next we tighten the NP-completeness of bDDDP by showing that it remains NP-complete even in chordal graphs. We also propose a \((\ln ({\varDelta }^{2}+(b-1){\varDelta }+b)+1)\)-approximation algorithm for MbDDP, where \({\varDelta }\) is the maximum degree of input graph \(G=(V,E)\) and prove that MbDDP cannot be approximated within \((1-\epsilon ) \ln (|V|)\) for any \(\epsilon >0\) unless NP \(\subseteq \) DTIME\((|V|^{O(\log \log |V|)})\). Finally, we show that MbDDP is APX-complete for bipartite graphs with maximum degree \(\max \{b,4\}\).  相似文献   

15.
Let k be a positive integer and G=(V,E) be a graph. A vertex subset D of a graph G is called a perfect k-dominating set of G, if every vertex v of G, not in D, is adjacent to exactly k vertices of D. The minimum cardinality of a perfect k-dominating set of G is the perfect k-domination number γ kp (G). In this paper, we give characterizations of graphs for which γ kp (G)=γ(G)+k?2 and prove that the perfect k-domination problem is NP-complete even when restricted to bipartite graphs and chordal graphs. Also, by using dynamic programming techniques, we obtain an algorithm to determine the perfect k-domination number of trees.  相似文献   

16.
For an integer \(k \ge 1\), a distance k-dominating set of a connected graph G is a set S of vertices of G such that every vertex of V(G) is at distance at most k from some vertex of S. The distance k-domination number \(\gamma _k(G)\) of G is the minimum cardinality of a distance k-dominating set of G. In this paper, we establish an upper bound on the distance k-domination number of a graph in terms of its order, minimum degree and maximum degree. We prove that for \(k \ge 2\), if G is a connected graph with minimum degree \(\delta \ge 2\) and maximum degree \(\Delta \) and of order \(n \ge \Delta + k - 1\), then \(\gamma _k(G) \le \frac{n + \delta - \Delta }{\delta + k - 1}\). This result improves existing known results.  相似文献   

17.
In this paper, we study the parameterized dominating set problem in chordal graphs. The goal of the problem is to determine whether a given chordal graph G=(V,E) contains a dominating set of size k or not, where k is an integer parameter. We show that the problem is W[1]-hard and it cannot be solved in time unless 3SAT can be solved in subexponential time. In addition, we show that the upper bound of this problem can be improved to when the underlying graph G is an interval graph.  相似文献   

18.
The status of a vertex in a connected graph is the sum of distances between the vertex and all vertices. The minimum status of a connected graph is the minimum of statuses of all vertices of this graph. In this paper we obtain the sharp lower bound and the sharp upper bound on the minimum status of a connected graph with maximum degree k and order n. All the graphs attaining the lower bound are obtained, and a necessary condition is given for those graphs attaining the upper bound.  相似文献   

19.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number $\mathrm{sd}_{\gamma_{t}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Favaron, Karami, Khoeilar and Sheikholeslami (J. Comb. Optim. 20:76–84, 2010a) conjectured that: For any connected graph G of order n≥3, $\mathrm{sd}_{\gamma_{t}}(G)\le \gamma_{t}(G)+1$ . In this paper we use matching to prove this conjecture for graphs with no 3-cycle and 5-cycle. In particular this proves the conjecture for bipartite graphs.  相似文献   

20.
A k-colouring of a graph G=(V,E) is a mapping c:V→{1,2,…,k} such that c(u)≠c(v) whenever uv is an edge. The reconfiguration graph of the k-colourings of G contains as its vertex set the k-colourings of G, and two colourings are joined by an edge if they differ in colour on just one vertex of G. We introduce a class of k-colourable graphs, which we call k-colour-dense graphs. We show that for each k-colour-dense graph G, the reconfiguration graph of the ?-colourings of G is connected and has diameter O(|V|2), for all ?k+1. We show that this graph class contains the k-colourable chordal graphs and that it contains all chordal bipartite graphs when k=2. Moreover, we prove that for each k≥2 there is a k-colourable chordal graph G whose reconfiguration graph of the (k+1)-colourings has diameter Θ(|V|2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号