首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper presents a (10+ε)-approximation algorithm to compute minimum-weight connected dominating set (MWCDS) in unit disk graph. MWCDS is to select a vertex subset with minimum weight for a given unit disk graph, such that each vertex of the graph is contained in this subset or has a neighbor in this subset. Besides, the subgraph induced by this vertex subset is connected. Our algorithm is composed of two phases: the first phase computes a dominating set, which has approximation ratio 6+ε (ε is an arbitrary positive number), while the second phase connects the dominating sets computed in the first phase, which has approximation ratio 4. This work is supported in part by National Science Foundation under grant CCF-9208913 and CCF-0728851; and also supported by NSFC (60603003) and XJEDU.  相似文献   

2.
Given a connected and weighted graph \(G=(V, E)\) with each vertex v having a nonnegative weight w(v), the minimum weighted connected vertex cover \(P_{3}\) problem \((MWCVCP_{3})\) is required to find a subset C of vertices of the graph with minimum total weight, such that each path with length 2 has at least one vertex in C, and moreover, the induced subgraph G[C] is connected. This kind of problem has many applications concerning wireless sensor networks and ad hoc networks. When homogeneous sensors are deployed into a three-dimensional space instead of a plane, the mathematical model for the sensor network is a unit ball graph instead of a unit disk graph. In this paper, we propose a new concept called weak c-local and give the first polynomial time approximation scheme (PTAS) for \(MWCVCP_{3}\) in unit ball graphs when the weight is smooth and weak c-local.  相似文献   

3.
Given a graph G=(V,E) with node weight w:VR +, the minimum weighted connected vertex cover problem (MWCVC) is to seek a subset of vertices of the graph with minimum total weight, such that for any edge of the graph, at least one endpoint of the edge is contained in the subset, and the subgraph induced by this subset is connected. In this paper, we study the problem on unit disk graph. A polynomial-time approximation scheme (PTAS) for MWCVC is presented under the condition that the graph is c-local.  相似文献   

4.
Given a graph G=(V,E) with node weight w:VR + and a subset SV, find a minimum total weight tree interconnecting all nodes in S. This is the node-weighted Steiner tree problem which will be studied in this paper. In general, this problem is NP-hard and cannot be approximated by a polynomial time algorithm with performance ratio aln n for any 0<a<1 unless NPDTIME(n O(log n)), where n is the number of nodes in s. In this paper, we are the first to show that even though for unit disk graphs, the problem is still NP-hard and it has a polynomial time constant approximation. We present a 2.5ρ-approximation where ρ is the best known performance ratio for polynomial time approximation of classical Steiner minimum tree problem in graphs. As a corollary, we obtain that there is a polynomial time (9.875+ε)-approximation algorithm for minimum weight connected dominating set in unit disk graphs, and also there is a polynomial time (4.875+ε)-approximation algorithm for minimum weight connected vertex cover in unit disk graphs.  相似文献   

5.
For a graph G with vertex set V and edge set E, a (k,k′)-total list assignment L of G assigns to each vertex v a set L(v) of k real numbers as permissible weights, and assigns to each edge e a set L(e) of k′ real numbers as permissible weights. If for any (k,k′)-total list assignment L of G, there exists a mapping f:VE→? such that f(y)∈L(y) for each yVE, and for any two adjacent vertices u and v, ∑ yN(u) f(uy)+f(u)≠∑ xN(v) f(vx)+f(v), then G is (k,k′)-total weight choosable. It is conjectured by Wong and Zhu that every graph is (2,2)-total weight choosable, and every graph with no isolated edges is (1,3)-total weight choosable. In this paper, it is proven that a graph G obtained from any loopless graph H by subdividing each edge with at least one vertex is (1,3)-total weight choosable and (2,2)-total weight choosable. It is shown that s-degenerate graphs (with s≥2) are (1,2s)-total weight choosable. Hence planar graphs are (1,10)-total weight choosable, and outerplanar graphs are (1,4)-total weight choosable. We also give a combinatorial proof that wheels are (2,2)-total weight choosable, as well as (1,3)-total weight choosable.  相似文献   

6.
Let T be a weighted tree with a positive number w(v) associated with each vertex v. A subtree S is a w-central subtree of the weighted tree T if it has the minimum eccentricity \(e_L(S)\) in median graph \(G_{LW}\). A w-central subtree with the minimum vertex weight is called a least w-central subtree of the weighted tree T. In this paper we show that each least w-central subtree of a weighted tree either contains a vertex of the w-centroid or is adjacent to a vertex of the w-centroid. Also, we show that any two least w-central subtrees of a weighted tree either have a nonempty intersection or are adjacent.  相似文献   

7.
For given a pair of nodes in a graph, the minimum non-separating path problem looks for a minimum weight path between the two nodes such that the remaining graph after removing the path is still connected. The balanced connected bipartition (BCP2) problem looks for a way to bipartition a graph into two connected subgraphs with their weights as equal as possible. In this paper we present an algorithm in time O(NlogN) for finding a minimum weight non-separating path between two given nodes in a grid graph of N nodes with positive weight. This result leads to a 5/4-approximation algorithm for the BCP2 problem on grid graphs, which is the currently best ratio achieved in polynomial time. We also developed an exact algorithm for the BCP2 problem on grid graphs. Based on the exact algorithm and a rounding technique, we show an approximation scheme, which is a fully polynomial time approximation scheme for fixed number of rows.  相似文献   

8.
A vertex subset S of a graph G=(V,E) is a paired dominating set if every vertex of G is adjacent to some vertex in S and the subgraph induced by S contains a perfect matching. The paired domination number of G, denoted by γ pr (G), is the minimum cardinality of a paired dominating set of?G. A?graph with no isolated vertex is called paired domination vertex critical, or briefly γ pr -critical, if for any vertex v of G that is not adjacent to any vertex of degree one, γ pr (G?v)<γ pr (G). A?γ pr -critical graph G is said to be k-γ pr -critical if γ pr (G)=k. In this paper, we firstly show that every 4-γ pr -critical graph of even order has a perfect matching if it is K 1,5-free and every 4-γ pr -critical graph of odd order is factor-critical if it is K 1,5-free. Secondly, we show that every 6-γ pr -critical graph of even order has a perfect matching if it is K 1,4-free.  相似文献   

9.
Adjacent vertex distinguishing total colorings of outerplanar graphs   总被引:1,自引:1,他引:0  
An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing total coloring of G is denoted by χ a (G). In this paper, we characterize completely the adjacent vertex distinguishing total chromatic number of outerplanar graphs.  相似文献   

10.
The max-coloring problem is to compute a legal coloring of the vertices of a graph G=(V,E) with vertex weights w such that $\sum_{i=1}^{k}\max_{v\in C_{i}}w(v_{i})$ is minimized, where C 1,??,C k are the various color classes. For general graphs, max-coloring is as hard as the classical vertex coloring problem, a special case of the former where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring skinny trees, a broad class of trees that includes paths and spiders. For these graphs, we show that max-coloring can be solved in time O(|V|+time for sorting the vertex weights). When vertex weights are real numbers, we show a matching lower bound of ??(|V|log?|V|) in the algebraic computation tree model.  相似文献   

11.
Bipartite matching is an important problem in graph theory. With the prosperity of electronic commerce, such as online auction and AdWords allocation, bipartite matching problem has been extensively studied under online circumstances. In this work, we study the online weighted bipartite matching problem in adversary model, that is, there is a weighted bipartite graph \(G=(L,R,E)\) and the left side L is known as input, while the vertices in R come one by one in an order arranged by the adversary. When each vertex in R comes, its adjacent edges and relative weights are revealed. The algorithm should irreversibly decide whether to match this vertex to an unmatched neighbor in L with the objective to maximize the total weight of the obtained matching. When the weights are unbounded, the best algorithm can only achieve a competitive ratio \(\varTheta \left( \frac{1}{n}\right) \), where n is the number of vertices coming online. Thus, we mainly deal with two variants: the bounded weight problem in which all weights are in the range \([\alpha , \beta ]\), and the normalized summation problem in which each vertex in one side has the same total weights. We design algorithms for both variants with competitive ratio \(\varTheta \left( \max \left\{ \frac{1}{\log \frac{\beta }{\alpha }},\frac{1}{n}\right\} \right) \) and \(\varTheta \left( \frac{1}{\log n}\right) \) respectively. Furthermore, we show these two competitive ratios are tight by providing the corresponding hardness results.  相似文献   

12.
The minimum weight vertex cover problem (MWVCP) is one of the most popular combinatorial optimization problems with various real-world applications. Given an undirected graph where each vertex is weighted, the MWVCP is to find a subset of the vertices which cover all edges of the graph and has a minimum total weight of these vertices. In this paper, we propose a multi-start iterated tabu search algorithm (MS-ITS) to tackle MWVCP. By incorporating an effective tabu search method, MS-ITS exhibits several distinguishing features, including a novel neighborhood construction procedure and a fast evaluation strategy. Extensive experiments on the set of public benchmark instances show that the proposed heuristic is very competitive with the state-of-the-art algorithms in the literature.  相似文献   

13.
In this paper, we study the antenna orientation problem concerning symmetric connectivity in directional wireless sensor networks. We are given a set of nodes each of which is equipped with one directional antenna with beam-width \(\theta = 2\pi /3\) and is initially assigned a transmission range 1 that yields a connected unit disk graph spanning all nodes. The objective of the problem is to compute an orientation of the antennas and to find a minimum transmission power range \(r=O(1)\) such that the induced symmetric communication graph is connected. We propose two algorithms that orient the antennas to yield symmetric connected communication graphs where the transmission power ranges are bounded by 6 and 5, which are currently the best results for this problem. We also study the performance of our algorithms through simulations.  相似文献   

14.
A subset M of vertices of a graph is called a static monopoly, if any vertex v outside M has at least \(\lceil \tfrac{1 }{2}\deg (v)\rceil \) neighbors in M. The minimum static monopoly problem has been extensively studied in graph theoretical context. We study this problem from an integer programming point of view for the first time and give a linear formulation for it. We study the facial structure of the corresponding polytope, classify facet defining inequalities of the integer programming formulation and introduce some families of valid inequalities. We show that in the presence of a vertex cut or an edge cut in the graph, the problem can be solved more efficiently by adding some strong valid inequalities. An algorithm is given that solves the minimum monopoly problem in trees and cactus graphs in linear time. We test our methods by performing several experiments on randomly generated graphs. A software package is introduced that solves the minimum monopoly problem using open source integer linear programming solvers.  相似文献   

15.
An adjacent vertex distinguishing edge-coloring of a graph G is a proper edge coloring of G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing edge-coloring of G is denoted by χ a (G). Let mad(G)\mathop{\mathrm{mad}}(G) and Δ denote the maximum average degree and the maximum degree of a graph G, respectively.  相似文献   

16.
The induced path number ??(G) of a graph G is defined as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a graph. A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum (or product) of a parameter of a graph and its complement. If G is a subgraph of H, then the graph H?E(G) is the complement of G relative to H. In this paper, we consider Nordhaus-Gaddum-type results for the parameter ?? when the relative complement is taken with respect to the complete bipartite graph K n,n .  相似文献   

17.
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number $\mathrm{sd}_{\gamma_{t}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Favaron, Karami, Khoeilar and Sheikholeslami (J. Comb. Optim. 20:76–84, 2010a) conjectured that: For any connected graph G of order n≥3, $\mathrm{sd}_{\gamma_{t}}(G)\le \gamma_{t}(G)+1$ . In this paper we use matching to prove this conjecture for graphs with no 3-cycle and 5-cycle. In particular this proves the conjecture for bipartite graphs.  相似文献   

18.
Let k be a positive integer and G=(V,E) be a graph. A vertex subset D of a graph G is called a perfect k-dominating set of G, if every vertex v of G, not in D, is adjacent to exactly k vertices of D. The minimum cardinality of a perfect k-dominating set of G is the perfect k-domination number γ kp (G). In this paper, we give characterizations of graphs for which γ kp (G)=γ(G)+k?2 and prove that the perfect k-domination problem is NP-complete even when restricted to bipartite graphs and chordal graphs. Also, by using dynamic programming techniques, we obtain an algorithm to determine the perfect k-domination number of trees.  相似文献   

19.
The adjacent vertex distinguishing total coloring of planar graphs   总被引:3,自引:3,他引:0  
An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G such that any pair of adjacent vertices have distinct sets of colors. The minimum number of colors needed for an adjacent vertex distinguishing total coloring of G is denoted by $\chi''_{a}(G)$ . In this paper, we characterize completely the adjacent vertex distinguishing total chromatic number of planar graphs G with large maximum degree Δ by showing that if Δ≥14, then $\varDelta+1\leq \chi''_{a}(G)\leq \varDelta+2$ , and $\chi''_{a}(G)=\varDelta+2$ if and only if G contains two adjacent vertices of maximum degree.  相似文献   

20.
For k??1 an integer, a set S of vertices in a graph G with minimum degree at least?k is a k-tuple total dominating set of G if every vertex of G is adjacent to at least k vertices in S. The minimum cardinality of a k-tuple total dominating set of G is the k-tuple total domination number of G. When k=1, the k-tuple total domination number is the well-studied total domination number. In this paper, we establish upper and lower bounds on the k-tuple total domination number of the cross product graph G×H for any two graphs G and H with minimum degree at least?k. In particular, we determine the exact value of the k-tuple total domination number of the cross product of two complete graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号