首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article considers first-order autoregressive panel model that is a simple model for dynamic panel data (DPD) models. The generalized method of moments (GMM) gives efficient estimators for these models. This efficiency is affected by the choice of the weighting matrix that has been used in GMM estimation. The non-optimal weighting matrices have been used in the conventional GMM estimators. This led to a loss of efficiency. Therefore, we present new GMM estimators based on optimal or suboptimal weighting matrices. Monte Carlo study indicates that the bias and efficiency of the new estimators are more reliable than the conventional estimators.  相似文献   

2.
We investigate the small-sample properties of three alternative generalized method of moments (GMM) estimators of asset-pricing models. The estimators that we consider include ones in which the weighting matrix is iterated to convergence and ones in which the weighting matrix is changed with each choice of the parameters. Particular attention is devoted to assessing the performance of the asymptotic theory for making inferences based directly on the deterioration of GMM criterion functions.  相似文献   

3.
The quadratic inference function (QIF) method is increasingly popular for the marginal analysis of correlated data due to its advantages over generalized estimating equations. Asymptotic theory is used to derive analytical results from the QIF, and we, therefore, study three asymptotically equivalent weighting matrices in terms of finite-sample parameter estimation. Furthermore, to improve small-sample estimation, we study modifications to the estimation procedure. Examples are presented via simulations and application. Results show that although theoretical weighting matrices work best, the proposed estimation procedure, in which initial estimates are held constant within the matrix of estimated empirical covariances, is preferable in practice.  相似文献   

4.
Statistical inference for the diffusion coefficients of multivariate diffusion processes has been well established in recent years; however, it is not the case for the drift coefficients. Furthermore, most existing estimation methods for the drift coefficients are proposed under the assumption that the diffusion matrix is positive definite and time homogeneous. In this article, we put forward two estimation approaches for estimating the drift coefficients of the multivariate diffusion models with the time inhomogeneously positive semidefinite diffusion matrix. They are maximum likelihood estimation methods based on both the martingale representation theorem and conditional characteristic functions and the generalized method of moments based on conditional characteristic functions, respectively. Consistency and asymptotic normality of the generalized method of moments estimation are also proved in this article. Simulation results demonstrate that these methods work well.  相似文献   

5.
Sample covariance matrices play a central role in numerous popular statistical methodologies, for example principal components analysis, Kalman filtering and independent component analysis. However, modern random matrix theory indicates that, when the dimension of a random vector is not negligible with respect to the sample size, the sample covariance matrix demonstrates significant deviations from the underlying population covariance matrix. There is an urgent need to develop new estimation tools in such cases with high‐dimensional data to recover the characteristics of the population covariance matrix from the observed sample covariance matrix. We propose a novel solution to this problem based on the method of moments. When the parametric dimension of the population spectrum is finite and known, we prove that the proposed estimator is strongly consistent and asymptotically Gaussian. Otherwise, we combine the first estimation method with a cross‐validation procedure to select the unknown model dimension. Simulation experiments demonstrate the consistency of the proposed procedure. We also indicate possible extensions of the proposed estimator to the case where the population spectrum has a density.  相似文献   

6.
For multivariate survival data, we study the generalized method of moments (GMM) approach to estimation and inference based on the marginal additive hazards model. We propose an efficient iterative algorithm using closed‐form solutions, which dramatically reduces the computational burden. Asymptotic normality of the proposed estimators is established, and the corresponding variance–covariance matrix can be consistently estimated. Inference procedures are derived based on the asymptotic chi‐squared distribution of the GMM objective function. Simulation studies are conducted to empirically examine the finite sample performance of the proposed method, and a real data example from a dental study is used for illustration.  相似文献   

7.
Summary. To construct an optimal estimating function by weighting a set of score functions, we must either know or estimate consistently the covariance matrix for the individual scores. In problems with high dimensional correlated data the estimated covariance matrix could be unreliable. The smallest eigenvalues of the covariance matrix will be the most important for weighting the estimating equations, but in high dimensions these will be poorly determined. Generalized estimating equations introduced the idea of a working correlation to minimize such problems. However, it can be difficult to specify the working correlation model correctly. We develop an adaptive estimating equation method which requires no working correlation assumptions. This methodology relies on finding a reliable approximation to the inverse of the variance matrix in the quasi-likelihood equations. We apply a multivariate generalization of the conjugate gradient method to find estimating equations that preserve the information well at fixed low dimensions. This approach is particularly useful when the estimator of the covariance matrix is singular or close to singular, or impossible to invert owing to its large size.  相似文献   

8.
We study some mathematical properties of the Marshall–Olkin extended Weibull distribution introduced by Marshall and Olkin (Biometrika 84:641–652, 1997). We provide explicit expressions for the moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves, reliability and Rényi entropy. We determine the moments of the order statistics. We also discuss the estimation of the model parameters by maximum likelihood and obtain the observed information matrix. We provide an application to real data which illustrates the usefulness of the model.  相似文献   

9.
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.  相似文献   

10.
In this paper, we introduce a bivariate Kumaraswamy (BVK) distribution whose marginals are Kumaraswamy distributions. The cumulative distribution function of this bivariate model has absolutely continuous and singular parts. Representations for the cumulative and density functions are presented and properties such as marginal and conditional distributions, product moments and conditional moments are obtained. We show that the BVK model can be obtained from the Marshall and Olkin survival copula and obtain a tail dependence measure. The estimation of the parameters by maximum likelihood is discussed and the Fisher information matrix is determined. We propose an EM algorithm to estimate the parameters. Some simulations are presented to verify the performance of the direct maximum-likelihood estimation and the proposed EM algorithm. We also present a method to generate bivariate distributions from our proposed BVK distribution. Furthermore, we introduce a BVK distribution which has only an absolutely continuous part and discuss some of its properties. Finally, a real data set is analysed for illustrative purposes.  相似文献   

11.
The first known bivariate distribution with gamma and beta marginals is introduced. Various representations are derived for its joint probability density function (pdf), joint cumulative distribution function (cdf), product moments, conditional pdfs, conditional cdfs, conditional moments, joint moment generating function, joint characteristic function and entropies. The method of maximum likelihood and the method of moments are used to derive the associated estimation procedures as well as the Fisher information matrix, variance–covariance matrix and the profile likelihood confidence intervals. An application to drought data from Nebraska is provided. Some other applications are also discussed. Finally, an extension of the bivariate distribution to the multivariate case is proposed.  相似文献   

12.
This paper considers various unresolved inference problems for the skewnormal distribution. We give reasons as to why the direct parameterization should not be used as a general basis for estimation, and consider method of moments and maximum likelihood estimation for the distribution's centred parameterization. Large sample theory results are given for the method of moments estimators, and numerical approaches for obtaining maximum likelihood estimates are discussed. Simulation is used to assess the performance of the two types of estimation. We also present procedures for testing for departures from the limiting folded normal distribution. Data on the percentage body fat of elite athletes are used to illustrate some of the issues raised.  相似文献   

13.
Given multivariate normal data and a certain spherically invariant prior distribution on the covariance matrix, it is desired to estimate the moments of the posterior marginal distributions of some scalar functions of the covariance matrix by importance sampling. To this end a family of distributions is defined on the group of orthogonal matrices and a procedure is proposed for selecting one of these distributions for use as a weighting distribution in the importance sampling process. In an example estimates are calculated for the posterior mean and variance of each element in the covariance matrix expressed in the original coordinates, for the posterior mean of each element in the correlation matrix expressed in the original coordinates, and for the posterior mean of each element in the covariance matrix expressed in the coordinates of the principal variables.  相似文献   

14.
This article investigates an efficient estimation method for a class of switching regressions based on the characteristic function (CF). We show that with the exponential weighting function, the CF-based estimator can be achieved from minimizing a closed form distance measure. Due to the availability of the analytical structure of the asymptotic covariance, an iterative estimation procedure is developed involving the minimization of a precision measure of the asymptotic covariance matrix. Numerical examples are illustrated via a set of Monte Carlo experiments examining the implementation, finite sample property and the efficiency of the proposed estimator.  相似文献   

15.
In this paper, we study some mathematical properties of the beta Weibull (BW) distribution, which is a quite flexible model in analysing positive data. It contains the Weibull, exponentiated exponential, exponentiated Weibull and beta exponential distributions as special sub-models. We demonstrate that the BW density can be expressed as a mixture of Weibull densities. We provide their moments and two closed-form expressions for their moment-generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and two entropies. The density of the BW-order statistics is a mixture of Weibull densities and two closed-form expressions are derived for their moments. The estimation of the parameters is approached by two methods: moments and maximum likelihood. We compare the performances of the estimates obtained from both the methods by simulation. The expected information matrix is derived. For the first time, we introduce a log-BW regression model to analyse censored data. The usefulness of the BW distribution is illustrated in the analysis of three real data sets.  相似文献   

16.
In this paper, the problem of estimation of the length distribution of marine populations in the Gaussian-multinomial model is considered. For the purpose of the mean and covariance parameter estimation, the method of moments estimators are developed. That is, minimum variance linear unbiased estimator for the mean frequency vector is derived and a consistent estimator for the covariance matrix of the length observations is presented. The usefulness of the proposed estimators is illustrated with an analysis of real cod length measurement data.  相似文献   

17.
We address the task of choosing prior weights for models that are to be used for weighted model averaging. Models that are very similar should usually be given smaller weights than models that are quite distinct. Otherwise, the importance of a model in the weighted average could be increased by augmenting the set of models with duplicates of the model or virtual duplicates of it. Similarly, the importance of a particular model feature (a certain covariate, say) could be exaggerated by including many models with that feature. Ways of forming a correlation matrix that reflects the similarity between models are suggested. Then, weighting schemes are proposed that assign prior weights to models on the basis of this matrix. The weighting schemes give smaller weights to models that are more highly correlated. Other desirable properties of a weighting scheme are identified, and we examine the extent to which these properties are held by the proposed methods. The weighting schemes are applied to real data, and prior weights, posterior weights and Bayesian model averages are determined. For these data, empirical Bayes methods were used to form the correlation matrices that yield the prior weights. Predictive variances are examined, as empirical Bayes methods can result in unrealistically small variances.  相似文献   

18.
The generalized Pareto distribution (GPD) has been widely used in the extreme value framework. The success of the GPD when applied to real data sets depends substantially on the parameter estimation process. Several methods exist in the literature for estimating the GPD parameters. Mostly, the estimation is performed by maximum likelihood (ML). Alternatively, the probability weighted moments (PWM) and the method of moments (MOM) are often used, especially when the sample sizes are small. Although these three approaches are the most common and quite useful in many situations, their extensive use is also due to the lack of knowledge about other estimation methods. Actually, many other methods, besides the ones mentioned above, exist in the extreme value and hydrological literatures and as such are not widely known to practitioners in other areas. This paper is the first one of two papers that aim to fill in this gap. We shall extensively review some of the methods used for estimating the GPD parameters, focusing on those that can be applied in practical situations in a quite simple and straightforward manner.  相似文献   

19.
For the first time, we introduce the beta log-normal (LN) distribution for which the LN distribution is a special case. Various properties of the new distribution are discussed. Expansions for the cumulative distribution and density functions that do not involve complicated functions are derived. We obtain expressions for its moments and for the moments of order statistics. The estimation of parameters is approached by the method of maximum likelihood, and the expected information matrix is derived. The new model is quite flexible in analysing positive data as an important alternative to the gamma, Weibull, generalized exponential, beta exponential, and Birnbaum–Saunders distributions. The flexibility of the new distribution is illustrated in an application to a real data set.  相似文献   

20.
In this article, we propose an extension of the Maxwell distribution, so-called the extended Maxwell distribution. This extension is evolved by using the Maxwell-X family of distributions and Weibull distribution. We study its fundamental properties such as hazard rate, moments, generating functions, skewness, kurtosis, stochastic ordering, conditional moments and moment generating function, hazard rate, mean and variance of the (reversed) residual life, reliability curves, entropy, etc. In estimation viewpoint, the maximum likelihood estimation of the unknown parameters of the distribution and asymptotic confidence intervals are discussed. We also obtain expected Fisher’s information matrix as well as discuss the existence and uniqueness of the maximum likelihood estimators. The EMa distribution and other competing distributions are fitted to two real datasets and it is shown that the distribution is a good competitor to the compared distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号