首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co-workers to the mixture autoregressive (MAR) model for the modelling of non-linear time series. The models consist of a mixture of K stationary or non-stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do.  相似文献   

2.
One way that has been used for identifying and estimating threshold autoregressive (TAR) models for nonlinear time series follows the Markov chain Monte Carlo (MCMC) approach via the Gibbs sampler. This route has major computational difficulties, specifically, in getting convergence to the parameter distributions. In this article, a new procedure for identifying a TAR model and for estimating its parameters is developed by following the reversible jump MCMC procedure. It is found that the proposed procedure conveys a Markov chain with convergence properties.  相似文献   

3.
Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroscedasticity; a favored model is Dynamic Conditional Correlation (DCC), derived from the ARCH/GARCH family started by Engle (1982). In the cross-section, the key is to correct in-sample biases of sample covariance matrix eigenvalues; a favored model is nonlinear shrinkage, derived from Random Matrix Theory (RMT). The present article marries these two strands of literature to deliver improved estimation of large dynamic covariance matrices. Supplementary material for this article is available online.  相似文献   

4.
The ordinal probit, univariate or multivariate, is a generalized linear model (GLM) structure that arises frequently in such disparate areas of statistical applications as medicine and econometrics. Despite the straightforwardness of its implementation using the Gibbs sampler, the ordinal probit may present challenges in obtaining satisfactory convergence.We present a multivariate Hastings-within-Gibbs update step for generating latent data and bin boundary parameters jointly, instead of individually from their respective full conditionals. When the latent data are parameters of interest, this algorithm substantially improves Gibbs sampler convergence for large datasets. We also discuss Monte Carlo Markov chain (MCMC) implementation of cumulative logit (proportional odds) and cumulative complementary log-log (proportional hazards) models with latent data.  相似文献   

5.
The Gibbs sampler has a great potential to be an efficient and versatile estimation procedure in item response theory. In this article, based on a data augmentation scheme using the Gibbs sampler, we propose a Bayesian procedure to estimate the multidimensional three-parameter logistic model. With the introduction of the two latent variables, the full conditional distributions are tractable, and consequently the Gibbs sampling is easy to implement. Finally, the technique is illustrated by using simulated and real data, respectively.  相似文献   

6.
We provide a comprehensive analysis of the out-of-sample performance of a wide variety of spot rate models in forecasting the probability density of future interest rates. Although the most parsimonious models perform best in forecasting the conditional mean of many financial time series, we find that the spot rate models that incorporate conditional heteroscedasticity and excess kurtosis or heavy tails have better density forecasts. Generalized autoregressive conditional heteroscedasticity significantly improves the modeling of the conditional variance and kurtosis, whereas regime switching and jumps improve the modeling of the marginal density of interest rates. Our analysis shows that the sophisticated spot rate models in the existing literature are important for applications involving density forecasts of interest rates.  相似文献   

7.
The Peña–Box model is a type of dynamic factor model whose factors try to capture the time-effect movements of a multiple time series. The Peña–Box model can be expressed as a vector autoregressive (VAR) model with constraints. This article derives the maximum likelihood estimates and the likelihood ratio test of the VAR model for Gaussian processes. Then a test statistic constructed by canonical correlation coefficients is presented and adjusted for conditional heteroscedasticity. Simulations confirm the validity of adjustments for conditional heteroscedasticity, and show that the proposed statistics perform better than the statistics used in the existing literature.  相似文献   

8.
Threshold autoregressive models are widely used in time‐series applications. When building or using such a model, it is important to know whether conditional heteroscedasticity exists. The authors propose a nonparametric test of this hypothesis. They develop the large‐sample theory of a test of nonlinear conditional heteroscedasticity adapted to nonlinear autoregressive models and study its finite‐sample properties through simulations. They also provide percentage points for carrying out this test, which is found to have very good power overall.  相似文献   

9.
The study of count data time series has been active in the past decade, mainly in theory and model construction. There are different ways to construct time series models with a geometric autocorrelation function, and a given univariate margin such as negative binomial. In this paper, we investigate negative binomial time series models based on the binomial thinning and two other expectation thinning operators, and show how they differ in conditional variance or heteroscedasticity. Since the model construction is in terms of probability generating functions, typically, the relevant conditional probability mass functions do not have explicit forms. In order to do simulations, likelihood inference, graphical diagnostics and prediction, we use a numerical method for inversion of characteristic functions. We illustrate the numerical methods and compare the various negative binomial time series models for a real data example.  相似文献   

10.
This paper considers quantile regression for a wide class of time series models including autoregressive and moving average (ARMA) models with asymmetric generalized autoregressive conditional heteroscedasticity errors. The classical mean‐variance models are reinterpreted as conditional location‐scale models so that the quantile regression method can be naturally geared into the considered models. The consistency and asymptotic normality of the quantile regression estimator is established in location‐scale time series models under mild conditions. In the application of this result to ARMA‐generalized autoregressive conditional heteroscedasticity models, more primitive conditions are deduced to obtain the asymptotic properties. For illustration, a simulation study and a real data analysis are provided.  相似文献   

11.
The Message in Daily Exchange Rates: A Conditional-Variance Tale   总被引:1,自引:0,他引:1  
Formal testing procedures confirm the presence of a unit root in the autoregressive polynomial of the univariate time series representation of daily exchange-rate data. The first differences of the logarithms of daily spot rates are approximately uncorrelated through time, and a generalized autoregressive conditional heteroscedasticity model with daily dummy variables and conditionally t-distributed errors is found to provide a good representation to the leptokurtosis and time-dependent conditional heteroscedasticity. The parameter estimates and characteristics of the models are found to be very similar for six different currencies. These apparent stylized facts carry over to weekly, fortnightly, and monthly data in which the degree of leptokurtosis and time-dependent heteroscedasticity is reduced as the length of the sampling interval increases.  相似文献   

12.
We provide methods to robustly estimate the parameters of stationary ergodic short-memory time series models in the potential presence of additive low-frequency contamination. The types of contamination covered include level shifts (changes in mean) and monotone or smooth time trends, both of which have been shown to bias parameter estimates toward regions of persistence in a variety of contexts. The estimators presented here minimize trimmed frequency domain quasi-maximum likelihood (FDQML) objective functions without requiring specification of the low-frequency contaminating component. When proper sample size-dependent trimmings are used, the FDQML estimators are consistent and asymptotically normal, asymptotically eliminating the presence of any spurious persistence. These asymptotic results also hold in the absence of additive low-frequency contamination, enabling the practitioner to robustly estimate model parameters without prior knowledge of whether contamination is present. Popular time series models that fit into the framework of this article include autoregressive moving average (ARMA), stochastic volatility, generalized autoregressive conditional heteroscedasticity (GARCH), and autoregressive conditional heteroscedasticity (ARCH) models. We explore the finite sample properties of the trimmed FDQML estimators of the parameters of some of these models, providing practical guidance on trimming choice. Empirical estimation results suggest that a large portion of the apparent persistence in certain volatility time series may indeed be spurious. Supplementary materials for this article are available online.  相似文献   

13.
We propose a method for estimating parameters in generalized linear models with missing covariates and a non-ignorable missing data mechanism. We use a multinomial model for the missing data indicators and propose a joint distribution for them which can be written as a sequence of one-dimensional conditional distributions, with each one-dimensional conditional distribution consisting of a logistic regression. We allow the covariates to be either categorical or continuous. The joint covariate distribution is also modelled via a sequence of one-dimensional conditional distributions, and the response variable is assumed to be completely observed. We derive the E- and M-steps of the EM algorithm with non-ignorable missing covariate data. For categorical covariates, we derive a closed form expression for the E- and M-steps of the EM algorithm for obtaining the maximum likelihood estimates (MLEs). For continuous covariates, we use a Monte Carlo version of the EM algorithm to obtain the MLEs via the Gibbs sampler. Computational techniques for Gibbs sampling are proposed and implemented. The parametric form of the assumed missing data mechanism itself is not `testable' from the data, and thus the non-ignorable modelling considered here can be viewed as a sensitivity analysis concerning a more complicated model. Therefore, although a model may have `passed' the tests for a certain missing data mechanism, this does not mean that we have captured, even approximately, the correct missing data mechanism. Hence, model checking for the missing data mechanism and sensitivity analyses play an important role in this problem and are discussed in detail. Several simulations are given to demonstrate the methodology. In addition, a real data set from a melanoma cancer clinical trial is presented to illustrate the methods proposed.  相似文献   

14.
Many empirical time series such as asset returns and traffic data exhibit the characteristic of time-varying conditional covariances, known as volatility or conditional heteroscedasticity. Modeling multivariate volatility, however, encounters several difficulties, including the curse of dimensionality. Dimension reduction can be useful and is often necessary. The goal of this article is to extend the idea of principal component analysis to principal volatility component (PVC) analysis. We define a cumulative generalized kurtosis matrix to summarize the volatility dependence of multivariate time series. Spectral analysis of this generalized kurtosis matrix is used to define PVCs. We consider a sample estimate of the generalized kurtosis matrix and propose test statistics for detecting linear combinations that do not have conditional heteroscedasticity. For application, we applied the proposed analysis to weekly log returns of seven exchange rates against U.S. dollar from 2000 to 2011 and found a linear combination among the exchange rates that has no conditional heteroscedasticity.  相似文献   

15.
Bayesian random effects models may be fitted using Gibbs sampling, but the Gibbs sampler can be slow mixing due to what might be regarded as lack of model identifiability. This slow mixing substantially increases the number of iterations required during Gibbs sampling. We present an analysis of data on immunity after Rubella vaccinations which results in a slow-mixing Gibbs sampler. We show that this problem of slow mixing can be resolved by transforming the random effects and then, if desired, expressing their joint prior distribution as a sequence of univariate conditional distributions. The resulting analysis shows that the decline in antibodies after Rubella vaccination is relatively shallow compared to the decline in antibodies which has been shown after Hepatitis B vaccination.  相似文献   

16.
Nonlinear time series analysis plays an important role in recent econometric literature, especially the bilinear model. In this paper, we cast the bilinear time series model in a Bayesian framework and make inference by using the Gibbs sampler, a Monte Carlo method. The methodology proposed is illustrated by using generated examples, two real data sets, as well as a simulation study. The results show that the Gibbs sampler provides a very encouraging option in analyzing bilinear time series.  相似文献   

17.
This article presents a novel Bayesian analysis for linear mixed-effects models. The analysis is based on the method of partial collapsing that allows some components to be partially collapsed out of a model. The resulting partially collapsed Gibbs (PCG) sampler constructed to fit linear mixed-effects models is expected to exhibit much better convergence properties than the corresponding Gibbs sampler. In order to construct the PCG sampler without complicating component updates, we consider the reparameterization of model components by expressing a between-group variance in terms of a within-group variance in a linear mixed-effects model. The proposed method of partial collapsing with reparameterization is applied to the Merton’s jump diffusion model as well as general linear mixed-effects models with proper prior distributions and illustrated using simulated data and longitudinal data on sleep deprivation.  相似文献   

18.
Likelihood-free methods such as approximate Bayesian computation (ABC) have extended the reach of statistical inference to problems with computationally intractable likelihoods. Such approaches perform well for small-to-moderate dimensional problems, but suffer a curse of dimensionality in the number of model parameters. We introduce a likelihood-free approximate Gibbs sampler that naturally circumvents the dimensionality issue by focusing on lower-dimensional conditional distributions. These distributions are estimated by flexible regression models either before the sampler is run, or adaptively during sampler implementation. As a result, and in comparison to Metropolis-Hastings-based approaches, we are able to fit substantially more challenging statistical models than would otherwise be possible. We demonstrate the sampler’s performance via two simulated examples, and a real analysis of Airbnb rental prices using a intractable high-dimensional multivariate nonlinear state-space model with a 36-dimensional latent state observed on 365 time points, which presents a real challenge to standard ABC techniques.  相似文献   

19.
This article proposes a joint test for conditional heteroscedasticity in dynamic panel data models. The test is constructed by checking the joint significance of estimates of second to pth-order serial correlation in the squares sequence of the first differenced errors. To avoid any distribution assumptions of the errors and the effects, we adopt the GMM estimation for the parameter coefficient and higher order moment estimation for the errors. Based on the estimations, a joint test is constructed for conditional heteroscedasticity in the error. The resulted test is asymptotically chi-squared under the null hypothesis and easy to implement. The small sample properties of the test are investigated by means of Monte Carlo experiments. The evidence shows that the test performs well in dynamic panel data with large number n of individuals and short periods T of time. A real data is analyzed for illustration.  相似文献   

20.
Combining the multivariate probit models with the multivariate partially linear single-index models, we propose new semiparametric latent variable models for multivariate ordinal response data. Based on the reversible jump Markov chain Monte Carlo technique, we develop a fully Bayesian method with free-knot splines to analyse the proposed models. To address the problem that the ordinary Gibbs sampler usually converges slowly, we make use of the partial-collapse and parameter-expansion techniques in our algorithm. The proposed methodology are demonstrated by simulated and real data examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号