首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

2.
In this paper, we present an adaptive evolutionary Monte Carlo algorithm (AEMC), which combines a tree-based predictive model with an evolutionary Monte Carlo sampling procedure for the purpose of global optimization. Our development is motivated by sensor placement applications in engineering, which requires optimizing certain complicated “black-box” objective function. The proposed method is able to enhance the optimization efficiency and effectiveness as compared to a few alternative strategies. AEMC falls into the category of adaptive Markov chain Monte Carlo (MCMC) algorithms and is the first adaptive MCMC algorithm that simulates multiple Markov chains in parallel. A theorem about the ergodicity property of the AEMC algorithm is stated and proven. We demonstrate the advantages of the proposed method by applying it to a sensor placement problem in a manufacturing process, as well as to a standard Griewank test function.  相似文献   

3.
We present a versatile Monte Carlo method for estimating multidimensional integrals, with applications to rare-event probability estimation. The method fuses two distinct and popular Monte Carlo simulation methods—Markov chain Monte Carlo and importance sampling—into a single algorithm. We show that for some applied numerical examples the proposed Markov Chain importance sampling algorithm performs better than methods based solely on importance sampling or MCMC.  相似文献   

4.
We carry out finite sample size parameter estimation methods for long-memory parameters of the class of seasonal fractional ARIMA with stable innovations. In particular, we consider the semiparametric method studied in Reisen et al. (2006) [27] and two Whittle approaches: the classical Whittle method and a method based on a Markov Chains Monte Carlo (MCMC) procedure. The performance of the methods is discussed using a Monte Carlo simulation.  相似文献   

5.
Park  Joonha  Atchadé  Yves 《Statistics and Computing》2020,30(5):1325-1345

We explore a general framework in Markov chain Monte Carlo (MCMC) sampling where sequential proposals are tried as a candidate for the next state of the Markov chain. This sequential-proposal framework can be applied to various existing MCMC methods, including Metropolis–Hastings algorithms using random proposals and methods that use deterministic proposals such as Hamiltonian Monte Carlo (HMC) or the bouncy particle sampler. Sequential-proposal MCMC methods construct the same Markov chains as those constructed by the delayed rejection method under certain circumstances. In the context of HMC, the sequential-proposal approach has been proposed as extra chance generalized hybrid Monte Carlo (XCGHMC). We develop two novel methods in which the trajectories leading to proposals in HMC are automatically tuned to avoid doubling back, as in the No-U-Turn sampler (NUTS). The numerical efficiency of these new methods compare favorably to the NUTS. We additionally show that the sequential-proposal bouncy particle sampler enables the constructed Markov chain to pass through regions of low target density and thus facilitates better mixing of the chain when the target density is multimodal.

  相似文献   

6.
Feature selection arises in many areas of modern science. For example, in genomic research, we want to find the genes that can be used to separate tissues of different classes (e.g. cancer and normal). One approach is to fit regression/classification models with certain penalization. In the past decade, hyper-LASSO penalization (priors) have received increasing attention in the literature. However, fully Bayesian methods that use Markov chain Monte Carlo (MCMC) for regression/classification with hyper-LASSO priors are still in lack of development. In this paper, we introduce an MCMC method for learning multinomial logistic regression with hyper-LASSO priors. Our MCMC algorithm uses Hamiltonian Monte Carlo in a restricted Gibbs sampling framework. We have used simulation studies and real data to demonstrate the superior performance of hyper-LASSO priors compared to LASSO, and to investigate the issues of choosing heaviness and scale of hyper-LASSO priors.  相似文献   

7.
We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelization and additional flexibility in MCMC implementation. We detail minimal conditions which ensure strong consistency of the suggested estimators, and provide central limit theorems with expressions for asymptotic variances. We demonstrate how our method can make use of SMC in the state space models context, using Laplace approximations and time-discretized diffusions. Our experimental results are promising and show that the IS-type approach can provide substantial gains relative to an analogous DA scheme, and is often competitive even without parallelization.  相似文献   

8.
Statistics and Computing - Gibbs sampling is a widely used Markov chain Monte Carlo (MCMC) method for numerically approximating integrals of interest in Bayesian statistics and other mathematical...  相似文献   

9.
ABSTRACT

The maximum likelihood and Bayesian approaches for estimating the parameters and the prediction of future record values for the Kumaraswamy distribution has been considered when the lower record values along with the number of observations following the record values (inter-record-times) have been observed. The Bayes estimates are obtained based on a joint bivariate prior for the shape parameters. In this case, Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo (MCMC) method due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The MCMC method has been also used to construct the highest posterior density credible intervals. The Bayes and the maximum likelihood estimates are compared by using the estimated risk through Monte Carlo simulations. We further consider the non-Bayesian and Bayesian prediction for future lower record values arising from the Kumaraswamy distribution based on record values with their corresponding inter-record times and only record values. The comparison of the derived predictors are carried out by using Monte Carlo simulations. Real data are analysed for an illustration of the findings.  相似文献   

10.
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a layered (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods.  相似文献   

11.
An automated (Markov chain) Monte Carlo EM algorithm   总被引:1,自引:0,他引:1  
We present an automated Monte Carlo EM (MCEM) algorithm which efficiently assesses Monte Carlo error in the presence of dependent Monte Carlo, particularly Markov chain Monte Carlo, E-step samples and chooses an appropriate Monte Carlo sample size to minimize this Monte Carlo error with respect to progressive EM step estimates. Monte Carlo error is gauged though an application of the central limit theorem during renewal periods of the MCMC sampler used in the E-step. The resulting normal approximation allows us to construct a rigorous and adaptive rule for updating the Monte Carlo sample size each iteration of the MCEM algorithm. We illustrate our automated routine and compare the performance with competing MCEM algorithms in an analysis of a data set fit by a generalized linear mixed model.  相似文献   

12.
We have compared the efficacy of five imputation algorithms readily available in SAS for the quadratic discriminant function. Here, we have generated several different parametric-configuration training data with missing data, including monotone missing-at-random observations, and used a Monte Carlo simulation to examine the expected probabilities of misclassification for the two-class quadratic statistical discrimination problem under five different imputation methods. Specifically, we have compared the efficacy of the complete observation-only method and the mean substitution, regression, predictive mean matching, propensity score, and Markov Chain Monte Carlo (MCMC) imputation methods. We found that the MCMC and propensity score multiple imputation approaches are, in general, superior to the other imputation methods for the configurations and training-sample sizes we considered.  相似文献   

13.
In panel data analysis, predictors may impact response in substantially different manner. Some predictors are in homogenous effects across all individuals, while the others are in heterogenous way. How to effectively differentiate these two kinds of predictors is crucial, particularly in high-dimensional panel data, since the number of parameters should be greatly reduced and hence lead to better interpretability by homogenous assumption. In this article, based on a hierarchical Bayesian panel regression model, we propose a novel yet effective Markov chain Monte Carlo (MCMC) algorithm together with a simple maximum ratio criterion to detect the predictors in homogenous effects in high-dimensional panel data. Extensive Monte Carlo simulations show that this MCMC algorithm performs well. The usefulness of the proposed method is further demonstrated by a real example from China financial market.  相似文献   

14.
The maximum likelihood and Bayesian approaches for parameter estimations and prediction of future record values have been considered for the two-parameter Burr Type XII distribution based on record values with the number of trials following the record values (inter-record times). Firstly, the Bayes estimates are obtained based on a joint bivariate prior for the shape parameters. In this case, the Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo (MCMC) method due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The MCMC method has been also used to construct the highest posterior density credible intervals. Secondly, the Bayes estimates are obtained with respect to a discrete prior for the first shape parameter and a conjugate prior for other shape parameter. The Bayes and the maximum likelihood estimates are compared in terms of the estimated risk by the Monte Carlo simulations. We further consider the non-Bayesian and Bayesian prediction for future lower record arising from the Burr Type XII distribution based on record data. The comparison of the derived predictors is carried out by using Monte Carlo simulations. A real data are analysed for illustration purposes.  相似文献   

15.
We introduce a general Monte Carlo method based on Nested Sampling (NS), for sampling complex probability distributions and estimating the normalising constant. The method uses one or more particles, which explore a mixture of nested probability distributions, each successive distribution occupying ∼e −1 times the enclosed prior mass of the previous distribution. While NS technically requires independent generation of particles, Markov Chain Monte Carlo (MCMC) exploration fits naturally into this technique. We illustrate the new method on a test problem and find that it can achieve four times the accuracy of classic MCMC-based Nested Sampling, for the same computational effort; equivalent to a factor of 16 speedup. An additional benefit is that more samples and a more accurate evidence value can be obtained simply by continuing the run for longer, as in standard MCMC.  相似文献   

16.
We introduce a new class of interacting Markov chain Monte Carlo (MCMC) algorithms which is designed to increase the efficiency of a modified multiple-try Metropolis (MTM) sampler. The extension with respect to the existing MCMC literature is twofold. First, the sampler proposed extends the basic MTM algorithm by allowing for different proposal distributions in the multiple-try generation step. Second, we exploit the different proposal distributions to naturally introduce an interacting MTM mechanism (IMTM) that expands the class of population Monte Carlo methods and builds connections with the rapidly expanding world of adaptive MCMC. We show the validity of the algorithm and discuss the choice of the selection weights and of the different proposals. The numerical studies show that the interaction mechanism allows the IMTM to efficiently explore the state space leading to higher efficiency than other competing algorithms.  相似文献   

17.
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of a modified Weibull distribution based on a complete sample. While maximum-likelihood estimation (MLE) is the most used method for parameter estimation, MCMC has recently emerged as a good alternative. When applied to parameter estimation, MCMC methods have been shown to be easy to implement computationally, the estimates always exist and are statistically consistent, and their probability intervals are convenient to construct. Details of applying MCMC to parameter estimation for the modified Weibull model are elaborated and a numerical example is presented to illustrate the methods of inference discussed in this paper. To compare MCMC with MLE, a simulation study is provided, and the differences between the estimates obtained by the two algorithms are examined.  相似文献   

18.
I propose a method for inference in dynamic discrete choice models (DDCM) that utilizes Markov chain Monte Carlo (MCMC) and artificial neural networks (ANNs). MCMC is intended to handle high-dimensional integration in the likelihood function of richly specified DDCMs. ANNs approximate the dynamic-program (DP) solution as a function of the parameters and state variables prior to estimation to avoid having to solve the DP on each iteration. Potential applications of the proposed methodology include inference in DDCMs with random coefficients, serially correlated unobservables, and dependence across individual observations. The article discusses MCMC estimation of DDCMs, provides relevant background on ANNs, and derives a theoretical justification for the method. Experiments suggest this to be a promising approach.  相似文献   

19.
This article designs a Sequential Monte Carlo (SMC) algorithm for estimation of Bayesian semi-parametric Stochastic Volatility model for financial data. In particular, it makes use of one of the most recent particle filters called Particle Learning (PL). SMC methods are especially well suited for state-space models and can be seen as a cost-efficient alternative to Markov Chain Monte Carlo (MCMC), since they allow for online type inference. The posterior distributions are updated as new data is observed, which is exceedingly costly using MCMC. Also, PL allows for consistent online model comparison using sequential predictive log Bayes factors. A simulated data is used in order to compare the posterior outputs for the PL and MCMC schemes, which are shown to be almost identical. Finally, a short real data application is included.  相似文献   

20.
Most Markov chain Monte Carlo (MCMC) users address the convergence problem by applying diagnostic tools to the output produced by running their samplers. Potentially useful diagnostics can be borrowed from diverse areas such as time series. One such method is phase randomization. This paper describes this method in the context of MCMC, summarizes its characteristics, and contrasts its performance with those of the more common diagnostic tests for MCMC. It is observed that the new tool contributes information about third‐ and higher‐order cumulant behaviour which is important in characterizing certain forms of nonlinearity and non‐stationarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号