首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let X1X2,.be i.i.d. random variables and let Un= (n r)-1S?(n,r) h (Xi1,., Xir,) be a U-statistic with EUn= v, v unknown. Assume that g(X1) =E[h(X1,.,Xr) - v |X1]has a strictly positive variance s?2. Further, let a be such that φ(a) - φ(-a) =α for fixed α, 0 < α < 1, where φ is the standard normal d.f., and let S2n be the Jackknife estimator of n Var Un. Consider the stopping times N(d)= min {n: S2n: + n-12a-2},d > 0, and a confidence interval for v of length 2d,of the form In,d= [Un,-d, Un + d]. We assume that Var Un is unknown, and hence, no fixed sample size method is available for finding a confidence interval for v of prescribed width 2d and prescribed coverage probability α Turning to a sequential procedure, let IN(d),d be a sequence of sequential confidence intervals for v. The asymptotic consistency of this procedure, i.e. limd → 0P(v ∈ IN(d),d)=α follows from Sproule (1969). In this paper, the rate at which |P(v ∈ IN(d),d) converges to α is investigated. We obtain that |P(v ∈ IN(d),d) - α| = 0 (d1/2-(1+k)/2(1+m)), d → 0, where K = max {0,4 - m}, under the condition that E|h(X1, Xr)|m < ∞m > 2. This improves and extends recent results of Ghosh & DasGupta (1980) and Mukhopadhyay (1981).  相似文献   

2.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

3.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

4.
Let X1, X2,… be an independently and identically distributed sequence with ξX1 = 0, ξ exp (tX1 < ∞ (t ≧ 0) and partial sums Sn = X1 + … + Xn. Consider the maximum increment D1 (N, K) = max0≤nN - K (Sn + K - Sn)of the sequence (Sn) in (0, N) over a time K = KN, 1 ≦ KN. Under appropriate conditions on (KN) it is shown that in the case KN/log N → 0, but KN/(log N)1/2 → ∞, there exists a sequence (αN) such that K-1/2 D1 (N, K) - αN converges to 0 w. p. 1. This result provides a small increment analogue to the improved Erd?s-Rényi-type laws stated by Csörg? and Steinebach (1981).  相似文献   

5.
We concentrate on characteristics of minima XN from samples of iid lognormals X1i ~ 2pLND. We demonstrate that the distribution of XN for 2 ≤ N ≤ 1,000 may be fitted more accurately by 2pLND than by the limiting Gumbel distribution. An extended power model is established to represent the quotients CN/C1, where CN is the mean, standard deviation, or p-quantile of XN and C1 is the corresponding characteristic of X1i. Our empirical comparisons show that this model provides not only more accurate estimates than alternating approximations but it is also much simpler than its competitors.  相似文献   

6.
Let X 1,X 2,…,X n be independent exponential random variables such that X i has hazard rate λ for i = 1,…,p and X j has hazard rate λ* for j = p + 1,…,n, where 1 ≤ p < n. Denote by D i:n (λ, λ*) = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…,n, where X 0:n ≡ 0. It is shown that the spacings (D 1,n ,D 2,n ,…,D n:n ) are MTP2, strengthening one result of Khaledi and Kochar (2000), and that (D 1:n 2, λ*),…,D n:n 2, λ*)) ≤ lr (D 1:n 1, λ*),…,D n:n 1, λ*)) for λ1 ≤ λ* ≤ λ2, where ≤ lr denotes the multivariate likelihood ratio order. A counterexample is also given to show that this comparison result is in general not true for λ* < λ1 < λ2.  相似文献   

7.
Let X 1, X 2,…, X n be independent exponential random variables with X i having failure rate λ i for i = 1,…, n. Denote by D i:n  = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…, n, where X 0:n ≡ 0. It is shown that if λ n+1 ≤ [≥] λ k for k = 1,…, n then D n:n  ≤ lr D n+1:n+1 and D 1:n  ≤ lr D 2:n+1 [D 2:n+1 ≤ lr D 2:n ], and that if λ i  + λ j  ≥ λ k for all distinct i,j, and k then D n?1:n  ≤ lr D n:n and D n:n+1 ≤ lr D n:n , where ≤ lr denotes the likelihood ratio order. We also prove that D 1:n  ≤ lr D 2:n for n ≥ 2 and D 2:3 ≤ lr D 3:3 for all λ i 's.  相似文献   

8.
For X1, …, XN a random sample from a distribution F, let the process SδN(t) be defined as where K2N = σNi=1(ci ? c?)2 and R xi, + Δd, is the rank of Xi + Δdi, among X1 + Δd1, …, XN + ΔdN. The purpose of this note is to prove that, under certain regularity conditions on F and on the constants ci and di, SΔN (t) is asymptotically approximately a linear function of Δ, uniformly in t and in Δ, |Δ| ≤ C. The special case of two samples is considered.  相似文献   

9.
Let X be a normally distributed p-dimensional column vector with mean μ and positive definite covariance matrix σ. and let X α, α = 1,…, N, be a random sample of size N from this distribution. Partition X as ( X 1, X (2)', X '(3))', where X1 is one-dimension, X(2) is p2- dimensional, and so 1 + p1 + p2 = p. Let ρ1 and ρ be the multiple correlation coefficients of X1 with X(2) and with ( X '(2), X '(3))', respectively. Write ρ2/2 = ρ2 - ρ2/1. We shall cosider the following two problems  相似文献   

10.
Let X1Xn be a random sample from an absolutely continuous distribution with the corresponding order statistics X1:nX2:nXn:n. A complete solution of the problem, posed in 1967 by T. Ferguson, of determining the distribution by linearity of regression of Xk+2:n with respect to Xk:n is given. The only possible distributions are of the exponential, power and Pareto type. A linear regression relation for exponents of order statistics is also considered.  相似文献   

11.
Let X1 be a strictly stationary multiple time series with values in Rd and with a common density f. Let X1,.,.,Xn, be n consecutive observations of X1. Let k = kn, be a sequence of positive integers, and let Hni be the distance from Xi to its kth nearest neighbour among Xj, j i. The multivariate variable-kernel estimate fn, of f is defined by where K is a given density. The complete convergence of fn, to f on compact sets is established for time series satisfying a dependence condition (referred to as the strong mixing condition in the locally transitive sense) weaker than the strong mixing condition. Appropriate choices of k are explicitly given. The results apply to autoregressive processes and bilinear time-series models.  相似文献   

12.
Let X(1)X(2)≤···≤X(n) be the order statistics from independent and identically distributed random variables {Xi, 1≤in} with a common absolutely continuous distribution function. In this work, first a new characterization of distributions based on order statistics is presented. Next, we review some conditional expectation properties of order statistics, which can be used to establish some equivalent forms for conditional expectations for sum of random variables based on order statistics. Using these equivalent forms, some known results can be extended immediately.  相似文献   

13.
Let f be an unknown possibly multimodal density on Rd and let X1, X2, … be a sequence of independent random vectors with density f. Several recursive estimates of the mode of f are proposed, and sufficient conditions ensuring their weak and strong consistency are established.  相似文献   

14.
Let X ? (r), r ≥ 1, denote generalized order statistics based on an arbitrary distribution function F with finite pth absolute moment for some 1 ≤ p ≤ ∞. We present sharp upper bounds on E(X ? (s) ? X ? (r)), 1 ≤ r < s, for F being either general or life distribution. The bounds are expressed in various scale units generated by pth central absolute or raw moments of F, respectively. The distributions achieving the bounds are specified.  相似文献   

15.
Summary The problem of predicting the number of change points in a piecewise linear model is studied from a Bayesian viewpoint. For a given a priori joint probability functionf R,C=fRf C/R, whereR is the number of change points andC=C′(R)=(C1,…,CR) is the change-point epoch vector, the marginal posterior probability functionf R.C/Y is obtained, and then used to find predictors forR andC(R).  相似文献   

16.
We characterize symmetric Lorenz curves by the relation m(x, μ2/x) = μ (where μ =E(X) and m(x, y) = E(X | x ≤ X ≤ y) is the doubly truncated mean function). We establish that the points of the r.v. which generate the symmetric points on the Lorenz curve are x and μ2/x, and that all the distribution functions defined on the same support which are generators of the symmetric Lorenz curves have the same mean. We obtain the conditions under which doubly truncated distributions generate symmetrical Lorenz curves.  相似文献   

17.
ABSTRACT

Least squares estimator of the stability parameter ? ? |α| + |β| for a spatial unilateral autoregressive process Xk, ? = αXk ? 1, ? + βXk, ? ? 1 + ?k, ? is investigated and asymptotic normality with a scaling factor n5/4 is shown in the unstable case ? = 1. The result is in contrast to the unit root case of the AR(p) model Xk = α1Xk ? 1 + ??? + αpXk ? p + ?k, where the limiting distribution of the least squares estimator of the unit root parameter ? ? α1 + ??? + αp is not normal.  相似文献   

18.
Let {W(s); 8 ≥ 0} be a standard Wiener process, and let βN = (2aN (log (N/aN) + log log N)-1/2, 0 < αNN < ∞, where αN↑ and αN/N is a non-increasing function of N, and define γN(t) = βN[W(nN + taN) ? W(nN)), 0 ≥ t ≥ 1, with nN = NaN. Let K = {x ? C[0,1]: x is absolutely continuous, x(0) = 0 and }. We prove that, with probability one, the sequence of functions {γN(t), t ? [0,1]} is relatively compact in C[0,1] with respect to the sup norm ||·||, and its set of limit points is K. With aN = N, our result reduces to Strassen's well-known theorem. Our method of proof follows Strassen's original, direct approach. The latter, however, contains an oversight which, in turn, renders his proof invalid. Strassen's theorem is true, of course, and his proof can also be rectified. We do this in a somewhat more general context than that of his original theorem. Applications to partial sums of independent identically distributed random variables are also considered.  相似文献   

19.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

20.
A RENEWAL THEOREM IN MULTIDIMENSIONAL TIME   总被引:1,自引:0,他引:1  
Let Yl, Y2,… be i.i.d., positive, integer-valued random variables with means, μ. Let the sequences {Yij, j= 1,2,…}, i= 1,…, r be independent copies of {Y1, Y2,…}. For n={n1,…, nr.}, n1≥1, let Sn=S?n1k1=1= 1 …S?nrkr=1 Yik1… Yrkr. We show that S?Nk=1S?k1=1…S?nr=1 P[[Sn= k] ? [μ-r N logr-1 (N)/(r-1)!] as N →∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号