首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a new adaptive L1 penalized quantile regression estimator for high-dimensional sparse regression models with heterogeneous error sequences. We show that under weaker conditions compared with alternative procedures, the adaptive L1 quantile regression selects the true underlying model with probability converging to one, and the unique estimates of nonzero coefficients it provides have the same asymptotic normal distribution as the quantile estimator which uses only the covariates with non-zero impact on the response. Thus, the adaptive L1 quantile regression enjoys oracle properties. We propose a completely data driven choice of the penalty level λnλn, which ensures good performance of the adaptive L1 quantile regression. Extensive Monte Carlo simulation studies have been conducted to demonstrate the finite sample performance of the proposed method.  相似文献   

2.
In the context of longitudinal data analysis, a random function typically represents a subject that is often observed at a small number of time point. For discarding this restricted condition of observation number of each subject, we consider the semiparametric partially linear regression models with mean function x?βx?β + g(z), where x and z   are functional data. The estimations of ββ and g(z) are presented and some asymptotic results are given. It is shown that the estimator of the parametric component is asymptotically normal. The convergence rate of the estimator of the nonparametric component is also obtained. Here, the observation number of each subject is completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.  相似文献   

3.
It is already shown in Arnold and Stahlecker (2009) that, in linear regression, a uniformly best estimator exists in the class of all Γ-compatibleΓ-compatible linear affine estimators. Here, prior information is given by a fuzzy set ΓΓ defined by its ellipsoidal α-cutsα-cuts. Surprisingly, such a uniformly best linear affine estimator is uniformly best not only in the class of all Γ-compatibleΓ-compatible linear affine estimators but also in the class of all estimators satisfying a very weak and sensible condition. This property of a uniformly best linear affine estimator is shown in the present paper. Furthermore, two illustrative special cases are mentioned, where a generalized least squares estimator on the one hand and a general ridge or Kuks–Olman estimator on the other hand turn out to be uniformly best.  相似文献   

4.
We propose a robust regression method called regression with outlier shrinkage (ROS) for the traditional n>pn>p cases. It improves over the other robust regression methods such as least trimmed squares (LTS) in the sense that it can achieve maximum breakdown value and full asymptotic efficiency simultaneously. Moreover, its computational complexity is no more than that of LTS. We also propose a sparse estimator, called sparse regression with outlier shrinkage (SROS), for robust variable selection and estimation. It is proven that SROS can not only give consistent selection but also estimate the nonzero coefficients with full asymptotic efficiency under the normal model. In addition, we introduce a concept of nearly regression equivariant estimator for understanding the breakdown properties of sparse estimators, and prove that SROS achieves the maximum breakdown value of nearly regression equivariant estimators. Numerical examples are presented to illustrate our methods.  相似文献   

5.
We study the distribution of the adaptive LASSO estimator [Zou, H., 2006. The adaptive LASSO and its oracle properties. J. Amer. Statist. Assoc. 101, 1418–1429] in finite samples as well as in the large-sample limit. The large-sample distributions are derived both for the case where the adaptive LASSO estimator is tuned to perform conservative model selection as well as for the case where the tuning results in consistent model selection. We show that the finite-sample as well as the large-sample distributions are typically highly nonnormal, regardless of the choice of the tuning parameter. The uniform convergence rate is also obtained, and is shown to be slower than n-1/2n-1/2 in case the estimator is tuned to perform consistent model selection. In particular, these results question the statistical relevance of the ‘oracle’ property of the adaptive LASSO estimator established in Zou [2006. The adaptive LASSO and its oracle properties. J. Amer. Statist. Assoc. 101, 1418–1429]. Moreover, we also provide an impossibility result regarding the estimation of the distribution function of the adaptive LASSO estimator. The theoretical results, which are obtained for a regression model with orthogonal design, are complemented by a Monte Carlo study using nonorthogonal regressors.  相似文献   

6.
Local linear regression involves fitting a straight line segment over a small region whose midpoint is the target point x, and the local linear estimate at x   is the estimated intercept of that straight line segment, with an asymptotic bias of order h2h2 and variance of order (nh)-1(nh)-1 (h is the bandwidth). In this paper, we propose a new estimator, the double-smoothing local linear estimator, which is constructed by integrally combining all fitted values at x   of local lines in its neighborhood with another round of smoothing. The proposed estimator attempts to make use of all information obtained from fitting local lines. Without changing the order of variance, the new estimator can reduce the bias to an order of h4h4. The proposed estimator has better performance than local linear regression in situations with considerable bias effects; it also has less variability and more easily overcomes the sparse data problem than local cubic regression. At boundary points, the proposed estimator is comparable to local linear regression. Simulation studies are conducted and an ethanol example is used to compare the new approach with other competitive methods.  相似文献   

7.
Consider the nonparametric location-scale regression model Y=m(X)+σ(X)εY=m(X)+σ(X)ε, where the error εε is independent of the covariate XX, and mm and σσ are smooth but unknown functions. The pair (X,Y)(X,Y) is allowed to be subject to selection bias. We construct tests for the hypothesis that m(·)m(·) belongs to some parametric family of regression functions. The proposed tests compare the nonparametric maximum likelihood estimator (NPMLE) based on the residuals obtained under the assumed parametric model, with the NPMLE based on the residuals obtained without using the parametric model assumption. The asymptotic distribution of the test statistics is obtained. A bootstrap procedure is proposed to approximate the critical values of the tests. Finally, the finite sample performance of the proposed tests is studied in a simulation study, and the developed tests are applied on environmental data.  相似文献   

8.
We consider a regression of yy on xx given by a pair of mean and variance functions with a parameter vector θθ to be estimated that also appears in the distribution of the regressor variable xx. The estimation of θθ is based on an extended quasi-score (QS) function. We show that the QS estimator is optimal within a wide class of estimators based on linear-in-yy unbiased estimating functions. Of special interest is the case where the distribution of xx depends only on a subvector αα of θθ, which may be considered a nuisance parameter. In general, αα must be estimated simultaneously together with the rest of θθ, but there are cases where αα can be pre-estimated. A major application of this model is the classical measurement error model, where the corrected score (CS) estimator is an alternative to the QS estimator. We derive conditions under which the QS estimator is strictly more efficient than the CS estimator.  相似文献   

9.
10.
In this paper, under a nonparametric regression model, we introduce two families of robust procedures to estimate the regression function when missing data occur in the response. The first proposal is based on a local MM-functional applied to the conditional distribution function estimate adapted to the presence of missing data. The second proposal imputes the missing responses using the local MM-smoother based on the observed sample and then estimates the regression function with the completed sample. We show that the robust procedures considered are consistent and asymptotically normally distributed. A robust procedure to select the smoothing parameter is also discussed.  相似文献   

11.
This paper considered the estimation of the regression parameters of a general probit regression model. Accordingly, we proposed five ridge regression (RR) estimators for the probit regression models for estimating the parameters (β)(β) when the weighted design matrix is ill-conditioned and it is suspected that the parameter ββ may belong to a linear subspace defined by Hβ=hHβ=h. Asymptotic properties of the estimators are studied with respect to quadratic biases, MSE matrices and quadratic risks. The regions of optimality of the proposed estimators are determined based on the quadratic risks. Some relative efficiency tables and risk graphs are provided to illustrate the numerical comparison of the estimators. We conclude that when q≥3q3, one would uses PRRRE; otherwise one uses PTRRE with some optimum size αα. We also discuss the performance of the proposed estimators compare to the alternative ridge regression method due to Liu (1993).  相似文献   

12.
13.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

14.
15.
16.
17.
This paper is mainly concerned with minimax estimation in the general linear regression model y=Xβ+εy=Xβ+ε under ellipsoidal restrictions on the parameter space and quadratic loss function. We confine ourselves to estimators that are linear in the response vector y  . The minimax estimators of the regression coefficient ββ are derived under homogeneous condition and heterogeneous condition, respectively. Furthermore, these obtained estimators are the ridge-type estimators and mean dispersion error (MDE) superior to the best linear unbiased estimator b=(XW-1X)-1XW-1yb=(XW-1X)-1XW-1y under some conditions.  相似文献   

18.
This article is concerned with the estimation problem in the semiparametric isotonic regression model when the covariates are measured with additive errors and the response is missing at random. An inverse marginal probability weighted imputation approach is developed to estimate the regression parameters and a least-square approach under monotone constraint is employed to estimate the functional component. We show that the proposed estimator of the regression parameter is root-n consistent and asymptotically normal and the isotonic estimator of the functional component, at a fixed point, is cubic root-n consistent. A simulation study is conducted to examine the finite-sample properties of the proposed estimators. A data set is used to demonstrate the proposed approach.  相似文献   

19.
In this paper we discuss semiparametric additive isotonic regression models. We discuss the efficiency bound of the model and the least squares estimator under this model. We show that the ordinary least square estimator studied by Huang (2002) and Cheng (2009) for the semiparametric isotonic regression achieves the efficiency bound for the regular estimator when the true parameter belongs to the interior of the parameter space. We also show that the result by Cheng (2009) can be generalized to the case that the covariates are dependent on each other.  相似文献   

20.
Abstract. In this paper, two non‐parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel‐based approaches. The second estimator involves sequential fitting by univariate local polynomial quantile regressions for each additive component with the other additive components replaced by the corresponding estimates from the first estimator. The purpose of the extra local averaging is to reduce the variance of the first estimator. We show that the second estimator achieves oracle efficiency in the sense that each estimated additive component has the same variance as in the case when all other additive components were known. Asymptotic properties are derived for both estimators under dependent processes that are strictly stationary and absolutely regular. We also provide a demonstrative empirical application of additive quantile models to ambulance travel times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号