首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this article, new pseudo-Bayes and pseudo-empirical Bayes estimators for estimating the proportion of a potentially sensitive attribute in a survey sampling have been introduced. The proposed estimators are compared with the recent estimator proposed by Odumade and Singh [Efficient use of two decks of cards in randomized response sampling, Comm. Statist. Theory Methods 38 (2009), pp. 439–446] and Warner [Randomized response: A survey technique for eliminating evasive answer bias, J. Amer. Statist. Assoc. 60 (1965), pp. 63–69].  相似文献   

2.
In this paper, we adjust the Kuk (1990 Kuk, A.Y.C. (1990). Asking sensitive questions indirectly. Biometrika 77(2):436438.[Crossref], [Web of Science ®] [Google Scholar]) model for both protection and efficiency by making use of proportions of two non sensitive characteristics which are unrelated to the main sensitive characteristic of interest. Various situations, where the proportions of the two non sensitive characteristics in the population of interest are known and that when these proportions are unknown, have been investigated. We compared the adjusted model and Kuk's model through a simulation study from both the protection and efficiency points of view.  相似文献   

3.
Abstract

In this article, we propose a two folded approach for estimation of the population proportion of a sensitive attribute. The rationale of proposed technique is to give respondents choice if they want to avail randomized device or not. Thus, our technique is inherently capable of entertaining the responses attained through direct questioning and by employing randomization device, as well. We believe that free to choose policy will be helpful to develop a curtsy between interviewer and respondent (which is highly desirable, especially when sensitive issue is under consideration) and thus enhances the survey reliability. The proposed technique is developed for simple random sampling, at first, and then extended to stratified random sampling. The superior performance of proposed technique in comparison to the Kuk (1990 Kuk, A. Y. 1990. Asking sensitive questions indirectly. Biometrika 77 (2):4368. doi:10.1093/biomet/77.2.436.[Crossref], [Web of Science ®] [Google Scholar]) method is demonstrated throughout this article. We provide algebraic, graphical and numerical evidences in support of our proposed technique. Furthermore, we also offer cost analysis considering most commonly used cost functions in the literature of survey research.  相似文献   

4.
Horvitz and Thompson's (HT) [1952. A generalization of sampling without replacement from a finite universe. J. Amer. Statist. Assoc. 47, 663–685] well-known unbiased estimator for a finite population total admits an unbiased estimator for its variance as given by [Yates and Grundy, 1953. Selection without replacement from within strata with probability proportional to size. J. Roy. Statist. Soc. B 15, 253–261], provided the parent sampling design involves a constant number of distinct units in every sample to be chosen. If the design, in addition, ensures uniform non-negativity of this variance estimator, Rao and Wu [1988. Resampling inference with complex survey data. J. Amer. Statist. Assoc. 83, 231–241] have given their re-scaling bootstrap technique to construct confidence interval and to estimate mean square error for non-linear functions of finite population totals of several real variables. Horvitz and Thompson's estimators (HTE) are used to estimate the finite population totals. Since they need to equate the bootstrap variance of the bootstrap estimator to the Yates and Grundy's estimator (YGE) for the variance of the HTE in case of a single variable, i.e., in the linear case the YG variance estimator is required to be positive for the sample usually drawn.  相似文献   

5.
A stratified Warner''s randomized response model   总被引:2,自引:0,他引:2  
This paper proposes a new stratified randomized response model based on Warner's (J. Amer. Statist. Assoc. 60 (1965) 63) model that has an optimal allocation and large gain in precision. It also presents a drawback of the Hong et al. (Korean J. Appl. Statist. 7 (1994) 141) model under their proportional sampling assumption. It is shown that the proposed model is more efficient than the Hong et al. (Korean J. Appl. Statist. 7 (1994) 141) stratified randomized response model. Additionally, it is shown that the estimator based on the proposed method is more efficient than the Warner (J. Amer. Statist. Assoc. 60 (1965) 63), the Mangat and Singh (Biometrika 77 (1990) 439) and the Mangat (J. Roy. Statist. SQC. Ser. B 56 (1) (1994) 93) estimators under the conditions presented in both the case of completely truthful reporting and that of not completely truthful reporting by the respondents.  相似文献   

6.
It is shown that Strawderman's [1974. Minimax estimation of powers of the variance of a normal population under squared error loss. Ann. Statist. 2, 190–198] technique for estimating the variance of a normal distribution can be extended to estimating a general scale parameter in the presence of a nuisance parameter. Employing standard monotone likelihood ratio-type conditions, a new class of improved estimators for this scale parameter is derived under quadratic loss. By imposing an additional condition, a broader class of improved estimators is obtained. The dominating procedures are in form analogous to those in Strawderman [1974. Minimax estimation of powers of the variance of a normal population under squared error loss. Ann. Statist. 2, 190–198]. Application of the general results to the exponential distribution yields new sufficient conditions, other than those of Brewster and Zidek [1974. Improving on equivariant estimators. Ann. Statist. 2, 21–38] and Kubokawa [1994. A unified approach to improving equivariant estimators. Ann. Statist. 22, 290–299], for improving the best affine equivariant estimator of the scale parameter. A class of estimators satisfying the new conditions is constructed. The results shed new light on Strawderman's [1974. Minimax estimation of powers of the variance of a normal population under squared error loss. Ann. Statist. 2, 190–198] technique.  相似文献   

7.
8.
This study proposes the estimators for the mean and its variance of the number of respondents who possessed a rare sensitive attribute based on stratified sampling schemes (stratified sampling and stratified double sampling). This study deals with the extension of the estimation reported in Land et al. [Estimation of a rare sensitive attribute using Poisson distribution, Statistics (2011), in press. DOI: 10.1080/02331888.2010.524300] using a Poisson distribution and an unrelated question randomized response model reported in Greenberg et al. [The unrelated question randomized response model: Theoretical framework, J. Amer. Statist. Assoc. 64 (1969), 520–539]. In the stratified sampling, the estimators are proposed when the parameter of the rare unrelated attribute is known and unknown. The variances of estimators using a proportional and optimum allocation are also suggested. The proposed estimators are evaluated using a relative efficiency comparing variances of the estimators reported in Land et al. depending on the parameters and the probability of selecting a question. We showed that our proposed methods have better efficiencies than Land et al.’s randomized response model in some conditions. When the sizes of stratified populations are not given, other estimators are suggested using a stratified double sampling. For the proportional allocation, the difference between two variances in the stratified sampling and the stratified double sampling is given with the known rare unrelated attribute.  相似文献   

9.
Box and Meyer [1986. Dispersion effects from fractional designs. Technometrics 28(1), 19–27] were the first to consider identifying both location and dispersion effects from unreplicated two-level fractional factorial designs. Since the publication of their paper a number of different procedures (both iterative and non-iterative) have been proposed for estimating the location and dispersion effects. An overview and a critical analysis of most of these procedures is given by Brenneman and Nair [2001. Methods for identifying dispersion effects in unreplicated factorial experiments: a critical analysis and proposed strategies. Technometrics 43(4), 388–405]. Under a linear structure for the dispersion effects, non-iterative estimation methods for the dispersion effects were proposed by Brenneman and Nair [2001. Methods for identifying dispersion effects in unreplicated factorial experiments: a critical analysis and proposed strategies. Technometrics 43(4), 388–405], Liao and Iyer [2000. Optimal 2n-p2n-p fractional factorial designs for dispersion effects under a location-dispersion model. Comm. Statist. Theory Methods 29(4), 823–835] and Wiklander [1998. A comparison of two estimators of dispersion effects. Comm. Statist. Theory Methods 27(4), 905–923] (see also Wiklander and Holm [2003. Dispersion effects in unreplicated factorial designs. Appl. Stochastic. Models Bus. Ind. 19(1), 13–30]). We prove that for two-level factorial designs the proposed estimators are different representations of a single estimator. The proof uses the framework of Seely [1970a. Linear spaces and unbiased estimation. Ann. Math. Statist. 41, 1725–1734], in which quadratic estimators are expressed as inner products of symmetric matrices.  相似文献   

10.
This paper aimed at providing an efficient new unbiased estimator for estimating the proportion of a potentially sensitive attribute in survey sampling. The suggested randomization device makes use of the means, variances of scrambling variables, and the two scalars lie between “zero” and “one.” Thus, the same amount of information has been used at the estimation stage. The variance formula of the suggested estimator has been obtained. We have compared the proposed unbiased estimator with that of Kuk (1990 Kuk, A.Y.C. (1990). Asking sensitive questions inderectely. Biometrika 77:436438.[Crossref], [Web of Science ®] [Google Scholar]) and Franklin (1989 Franklin, L.A. (1989). A comparision of estimators for randomized response sampling with continuous distribution s from a dichotomous population. Commun. Stat. Theor. Methods 18:489505.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]), and Singh and Chen (2009 Singh, S., Chen, C.C. (2009). Utilization of higher order moments of scrambling variables in randomized response sampling. J. Stat. Plann. Inference. 139:33773380.[Crossref], [Web of Science ®] [Google Scholar]) estimators. Relevant conditions are obtained in which the proposed estimator is more efficient than Kuk (1990 Kuk, A.Y.C. (1990). Asking sensitive questions inderectely. Biometrika 77:436438.[Crossref], [Web of Science ®] [Google Scholar]) and Franklin (1989 Franklin, L.A. (1989). A comparision of estimators for randomized response sampling with continuous distribution s from a dichotomous population. Commun. Stat. Theor. Methods 18:489505.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]) and Singh and Chen (2009 Singh, S., Chen, C.C. (2009). Utilization of higher order moments of scrambling variables in randomized response sampling. J. Stat. Plann. Inference. 139:33773380.[Crossref], [Web of Science ®] [Google Scholar]) estimators. The optimum estimator (OE) in the proposed class of estimators has been identified which finally depends on moments ratios of the scrambling variables. The variance of the optimum estimator has been obtained and compared with that of the Kuk (1990 Kuk, A.Y.C. (1990). Asking sensitive questions inderectely. Biometrika 77:436438.[Crossref], [Web of Science ®] [Google Scholar]) and Franklin (1989 Franklin, L.A. (1989). A comparision of estimators for randomized response sampling with continuous distribution s from a dichotomous population. Commun. Stat. Theor. Methods 18:489505.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]) estimator and Singh and Chen (2009 Singh, S., Chen, C.C. (2009). Utilization of higher order moments of scrambling variables in randomized response sampling. J. Stat. Plann. Inference. 139:33773380.[Crossref], [Web of Science ®] [Google Scholar]) estimator. It is interesting to mention that the “optimum estimator” of the class of estimators due to Singh and Chen (2009 Singh, S., Chen, C.C. (2009). Utilization of higher order moments of scrambling variables in randomized response sampling. J. Stat. Plann. Inference. 139:33773380.[Crossref], [Web of Science ®] [Google Scholar]) depends on the parameter π under investigation which limits the use of Singh and Chen (2009 Singh, S., Chen, C.C. (2009). Utilization of higher order moments of scrambling variables in randomized response sampling. J. Stat. Plann. Inference. 139:33773380.[Crossref], [Web of Science ®] [Google Scholar]) OE in practice while the proposed OE in this paper is free from such a constraint. The proposed OE depends only on the moments ratios of scrambling variables. This is an advantage over the Singh and Chen (2009 Singh, S., Chen, C.C. (2009). Utilization of higher order moments of scrambling variables in randomized response sampling. J. Stat. Plann. Inference. 139:33773380.[Crossref], [Web of Science ®] [Google Scholar]) estimator. Numerical illustrations are given in the support of the present study when the scrambling variables follow normal distribution. Theoretical and empirical results are very sound and quite illuminating in the favor of the present study.  相似文献   

11.
In this paper, we suggest a class of estimators for estimating the population mean ? of the study variable Y using information on X?, the population mean of the auxiliary variable X using ranked set sampling envisaged by McIntyre [A method of unbiased selective sampling using ranked sets, Aust. J. Agric. Res. 3 (1952), pp. 385–390] and developed by Takahasi and Wakimoto [On unbiased estimates of the population mean based on the sample stratified by means of ordering, Ann. Inst. Statist. Math. 20 (1968), pp. 1–31]. The estimator reported by Kadilar et al. [Ratio estimator for the population mean using ranked set sampling, Statist. Papers 50 (2009), pp. 301–309] is identified as a member of the proposed class of estimators. The bias and the mean-squared error (MSE) of the proposed class of estimators are obtained. An asymptotically optimum estimator in the class is identified with its MSE formulae. To judge the merits of the suggested class of estimators over others, an empirical study is carried out.  相似文献   

12.
The randomized response (RR) technique pioneered by Warner, S.L. (1965) [Randomised response: a survey technique for eliminating evasive answer bias. J. Amer. Statist. Assoc. 60 , 63–69] is a useful tool in estimating the proportion of persons in a community bearing sensitive or socially disapproved characteristics. Mangat, N.S. & Singh, R. (1990) [An alternative rendomized response procedure. Biometrika 77 , 439–442] proposed a modification of Warner's procedure by using two RR techniques. Presented here is a generalized two‐stage RR procedure and derivation of the condition under which the proposed procedure produces a more precise estimator of the population parameter. A comparative study on the performance of this two‐stage procedure and conventional RR techniques, assuming that the respondents' jeopardy level in this proposed method remains the same as that offered by the traditional RR procedures, is also reported. In addition, a numerical example compares the efficiency of the proposed method with the traditional RR procedures.  相似文献   

13.
Rao (J. Indian Statist. Assoc. 17 (1979) 125) has given a ‘necessary form’ for an unbiased mean square error (MSE) estimator to be ‘uniformly non-negative’. The MSE is of a homogeneous linear estimator ‘subject to a specified constraint’, for a survey population total of a real variable of interest. We present a corresponding theorem when the ‘constraint’ is relaxed. Certain results are added presenting formulae for estimators of MSEs when the variate-values for the sampled individuals are not ascertainable. Though not ascertainable, they are supposed to be suitably estimated either by (1) randomized response techniques covering sensitive issues or by (2) further sampling in ‘subsequent’ stages in specific ways when the initial sampling units are composed of a number of sub-units. Using live numerical data, practical uses of the proposed alternative MSE estimators are demonstrated.  相似文献   

14.
Sugden and Smith [2002. Exact linear unbiased estimation in survey sampling. J. Stat. Plann. Inf. 102, 25–38] and Rao [2002. Discussion of “Exact linear unbiased estimation in survey sampling”. J. Stat. Plann. Inf. 102, 39–40] suggested some useful techniques of deriving a linear unbiased estimator of a finite population total by modifying a given linear estimator. In this paper we suggest various generalizations of their results. In particular, we search for estimators satisfying the calibration property with respect to a related auxiliary variable and obtain some new calibrated unbiased ratio-type estimators for arbitrary sampling designs. We also explore a few properties of one of the estimators suggested in Sugden and Smith [2002. Exact linear unbiased estimation in survey sampling. J. Stat. Plann. Inf. 102, 25–38].  相似文献   

15.
In this paper, we extend the work of Gjestvang and Singh [A new randomized response model, J. R. Statist. Soc. Ser. B (Methodological) 68 (2006), pp. 523–530] to propose a new unrelated question randomized response model that can be used for any sampling scheme. The interesting thing is that the estimator based on one sample is free from the use of known proportion of an unrelated character, unlike Horvitz et al. [The unrelated question randomized response model, Social Statistics Section, Proceedings of the American Statistical Association, 1967, pp. 65–72], Greenberg et al. [The unrelated question randomized response model: Theoretical framework, J. Amer. Statist. Assoc. 64 (1969), pp. 520–539] and Mangat et al. [An improved unrelated question randomized response strategy, Calcutta Statist. Assoc. Bull. 42 (1992), pp. 167–168] models. The relative efficiency of the proposed model with respect to the existing competitors has been studied.  相似文献   

16.
Median Estimation Using Double Sampling   总被引:3,自引:0,他引:3  
This paper proposes a general class of estimators for estimating the median in double sampling. The position estimator, stratification estimator and regression type estimator attain the minimum variance of the general class of estimators. The optimum values of the first-phase and second-phase sample sizes are also obtained for the fixed cost and the fixed variance cases. An empirical study examines the performance of the double sampling strategies for median estimation. Finally, an extension of the methods of Chen & Qin (1993) and Kuk & Mak (1994) is considered for the double sampling strategy.  相似文献   

17.
Ratio and product estimators in stratified random sampling   总被引:1,自引:0,他引:1  
Khoshnevisan et al. [2007. A general family of estimators for estimating population mean using known value of some population parameter(s). Far East Journal of Theoretical Statistics 22, 181–191] have introduced a family of estimators using auxiliary information in simple random sampling. They have showed that these estimators are more efficient than the classical ratio estimator and that the minimum value of the mean square error (MSE) of this family is equal to the value of MSE of regression estimator. In this article, we adapt the estimators in this family to the stratified random sampling and motivated by the estimator in Searls [1964. Utilization of known coefficient of kurtosis in the estimation procedure of variance. Journal of the American Statistical Association 59, 1225–1226], we also propose a new family of estimators for the stratified random sampling. The expressions of bias and MSE of the adapted and proposed families are derived in a general form. Besides, considering the minimum cases of these MSE equations, the efficient conditions between the adapted and proposed families are obtained. Moreover, these theoretical findings are supported by a numerical example with original data.  相似文献   

18.
Sarjinder Singh 《Statistics》2013,47(3):566-574
In this note, a dual problem to the calibration of design weights of the Deville and Särndal [Calibration estimators in survey sampling, J. Amer. Statist. Assoc. 87 (1992), pp. 376–382] method has been considered. We conclude that the chi-squared distance between the design weights and the calibrated weights equals the square of the standardized Z-score obtained by the difference between the known population total of the auxiliary variable and its corresponding Horvitz and Thompson [A generalization of sampling without replacement from a finite universe, J. Amer. Statist. Assoc. 47 (1952), pp. 663–685] estimator divided by the sample standard deviation of the auxiliary variable to obtain the linear regression estimator in survey sampling.  相似文献   

19.
Abstract.  This paper studies Cox's proportional hazards model under covariate measurement error. Nakamura's [ Biometrika 77 (1990) 127] methodology of corrected log-likelihood will be applied to the so-called Breslow likelihood, which is, in the absence of measurement error, equivalent to partial likelihood. For a general error model with possibly heteroscedastic and non-normal additive measurement error, corrected estimators of the regression parameter as well as of the baseline hazard rate are obtained. The estimators proposed by Nakamura [Biometrics 48 (1992) 829], Kong et al. [ Scand. J. Statist. 25 (1998) 573] and Kong & Gu [ Statistica Sinica 9 (1999) 953] are re-established in the special cases considered there. This sheds new light on these estimators and justifies them as exact corrected score estimators. Finally, the method will be extended to some variants of the Cox model.  相似文献   

20.
A general nonparametric imputation procedure, based on kernel regression, is proposed to estimate points as well as set- and function-indexed parameters when the data are missing at random (MAR). The proposed method works by imputing a specific function of a missing value (and not the missing value itself), where the form of this specific function is dictated by the parameter of interest. Both single and multiple imputations are considered. The associated empirical processes provide the right tool to study the uniform convergence properties of the resulting estimators. Our estimators include, as special cases, the imputation estimator of the mean, the estimator of the distribution function proposed by Cheng and Chu [1996. Kernel estimation of distribution functions and quantiles with missing data. Statist. Sinica 6, 63–78], imputation estimators of a marginal density, and imputation estimators of regression functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号