首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first-order integer-valued autoregressive (INAR(1)) process with Poisson marginal distributions is considered. It is shown that the sample autocovariance function of the model is asymptotically normally distributed. We derive asymptotic distribution of Yule-Walker type estimators of parameters. It turns out that our Yule-Walker type estimators are better than the conditional least squares estimators proposed by Klimko and Nelson (1978) and Al-Osh and Alzaid (1987). also, we study the relationship between the model andM/M/∞ queueing system.  相似文献   

2.
This paper is concerned with semiparametric discrete kernel estimators when the unknown count distribution can be considered to have a general weighted Poisson form. The estimator is constructed by multiplying the Poisson estimate with a nonparametric discrete kernel-type estimate of the Poisson weight function. Comparisons are then carried out with the ordinary discrete kernel probability mass function estimators. The Poisson weight function is thus a local multiplicative correction factor, and is considered as the uniform measure to detect departures from the equidispersed Poisson distribution. In this way, the effects of dispersion and zero-proportion with respect to the standard Poisson distribution are also minimized. This method of estimation is also applied to the weighted binomial form for the count distribution having a finite support. The proposed estimators, in addition to being simple, easy-to-implement and effective, also outperform the competing nonparametric and parametric estimators in finite-sample situations. Two examples illustrate this new semiparametric estimation.  相似文献   

3.
In this paper, we consider a mixed compound Poisson process, that is, a random sum of independent and identically distributed (i.i.d.) random variables where the number of terms is a Poisson process with random intensity. We study nonparametric estimators of the jump density by specific deconvolution methods. Firstly, assuming that the random intensity has exponential distribution with unknown expectation, we propose two types of estimators based on the observation of an i.i.d. sample. Risks bounds and adaptive procedures are provided. Then, with no assumption on the distribution of the random intensity, we propose two non‐parametric estimators of the jump density based on the joint observation of the number of jumps and the random sum of jumps. Risks bounds are provided, leading to unusual rates for one of the two estimators. The methods are implemented and compared via simulations.  相似文献   

4.
For m–dependent, identically distributed random observation, the bootstrap method provides inconsistent estimators of the distribution and variance of the sample mean. This paper proposes an alternative resampling procedure. For estimating the distribution and variance of a function of the sample mean, the proposed resampling estimators are shown to be strongly consistent.  相似文献   

5.
Jun Shao 《Statistics》2013,47(3-4):203-237
This article reviews the applications of three resampling methods, the jackknife, the balanced repeated replication, and the bootstrap, in sample surveys. The sampling design under consideration is a stratified multistage sampling design. We discuss the implementation of the resampling methods; for example, the construction of balanced repeated replications and approximated balanced repeated replication estimators; four modified bootstrap algorithms to generate bootstrap samples; and three different ways of applying the resampling methods in the presence of imputed missing values. Asymptotic properties of the resampling estimators are discussed for two types of important survey estimators, functions of weighted averages and sample quantiles.  相似文献   

6.
Estimation in conditional first order autoregression with discrete support   总被引:1,自引:0,他引:1  
We consider estimation in the class of first order conditional linear autoregressive models with discrete support that are routinely used to model time series of counts. Various groups of estimators proposed in the literature are discussed: moment-based estimators; regression-based estimators; and likelihood-based estimators. Some of these have been used previously and others not. In particular, we address the performance of new types of generalized method of moments estimators and propose an exact maximum likelihood procedure valid for a Poisson marginal model using backcasting. The small sample properties of all estimators are comprehensively analyzed using simulation. Three situations are considered using data generated with: a fixed autoregressive parameter and equidispersed Poisson innovations; negative binomial innovations; and, additionally, a random autoregressive coefficient. The first set of experiments indicates that bias correction methods, not hitherto used in this context to our knowledge, are some-times needed and that likelihood-based estimators, as might be expected, perform well. The second two scenarios are representative of overdispersion. Methods designed specifically for the Poisson context now perform uniformly badly, but simple, bias-corrected, Yule-Walker and least squares estimators perform well in all cases.  相似文献   

7.
Some traditional life tests result in no or very few failures by the end of test. In such cases, one approach is to do life testing at higher-than-usual stress conditions in order to obtain failures quickly. This paper discusses a k-level step-stress accelerated life test under type I progressive group-censoring with random removals. An exponential failure time distribution with mean life that is a log-linear function of stress and a cumulative exposure model are considered. We derive the maximum likelihood estimators of the model parameters and establish the asymptotic properties of the estimators. We investigate four selection criteria which enable us to obtain the optimum test plans. One is to minimize the asymptotic variance of the maximum likelihood estimator of the logarithm of the mean lifetime at use-condition, and the other three criteria are to maximize the determinant, trace and the smallest eigenvalue of Fisher's information matrix. Some numerical studies are discussed to illustrate the proposed criteria.  相似文献   

8.
In this note we propose a new and novel kernel density estimator for directly estimating the probability and cumulative distribution function of an L-estimate from a single population based on utilizing the theory in Knight (1985) in conjunction with classic inversion theory. This idea is further developed for a kernel density estimator for the difference of L-estimates from two independent populations. The methodology is developed via a “plug-in” approach, but it is distinct from the classic bootstrap methodology in that it is analytically and computationally feasible to provide an exact estimate of the distribution function and thus eliminates the resampling related error. The asymptotic and finite sample properties of our estimators are examined. The procedure is illustrated via generating the kernel density estimate for the Tukey's trimean from a small data set.  相似文献   

9.
The problem considered in this paper is that of unbiased estimation of the variance of an exponential distribution using a ranked set sample (RSS). We propose some unbiased estimators each of which is better than the non-parametric minimum variance quadratic unbiased estimator based on a balanced ranked set sample as well as the uniformly minimum variance unbiased estimator based on a simple random sample (SRS) of the same size. Relative performances of the proposed estimators and a few other properties of the estimators including their robustness under imperfect ranking have also been studied.  相似文献   

10.
A robust estimator is developed for Poisson mixture models with a known number of components. The proposed estimator minimizes the L2 distance between a sample of data and the model. When the component distributions are completely known, the estimators for the mixing proportions are in closed form. When the parameters for the component Poisson distributions are unknown, numerical methods are needed to calculate the estimators. Compared to the minimum Hellinger distance estimator, the minimum L2 estimator can be less robust to extreme outliers, and often more robust to moderate outliers.  相似文献   

11.
Resampling methods are a common measure to estimate the variance of a statistic of interest when data consist of nonresponse and imputation is used as compensation. Applying resampling methods usually means that subsamples are drawn from the original sample and that variance estimates are computed based on point estimators of several subsamples. However, newer resampling methods such as the rescaling bootstrap of Chipperfield and Preston [Efficient bootstrap for business surveys. Surv Methodol. 2007;33:167–172] include all elements of the original sample in the computation of its point estimator. Thus, procedures to consider imputation in resampling methods cannot be applied in the ordinary way. For such methods, modifications are necessary. This paper presents an approach applying newer resampling methods for imputed data. The Monte Carlo simulation study conducted in the paper shows that the proposed approach leads to reliable variance estimates in contrast to other modifications.  相似文献   

12.
The paper explores statistical features of different resampling schemes under low resampling intensity. The original sample is considered in a very general framework of triangular arrays, without independence or equally distributed assumptions, although improvements under such conditions are also provided. We show that low resampling schemes have very interesting and flexible properties, providing new insights into the performance of widely used resampling methods, including subsampling, two-sample unbalanced permutation statistics or wild bootstrap. It is shown that, under regularity assumptions, resampling tests with critical values derived by the appertaining low resampling procedures are asymptotically valid and there is no loss of power compared with the power function of an ideal (but unfeasible) parametric family of tests. Moreover we show that in several contexts, including regression models, they may act as a filter for the normal part of a limit distribution, turning down the influence of outliers.  相似文献   

13.
If the power spectral density of a continuous time stationary stochastic process is not limited to a finite bandwidth, data sampled from that process at any uniform sampling rate leads to biased and inconsistent spectrum estimators, which are unsuitable for constructing confidence intervals. In this paper, we use the smoothed periodogram estimator to construct asymptotic confidence intervals shrinking to the true spectra, by allowing the sampling rate to go to infinity suitably fast as the sample size goes to infinity. The proposed method requires minimal computation, as it does not involve bootstrap or other resampling. The method is illustrated through a Monte-Carlo simulation study, and its performance is compared with that of the corresponding method based on uniform sampling at a fixed rate.  相似文献   

14.
We consider a random regression model with several-fold change-points. The results for one change-point are generalized. The maximum likelihood estimator of the parameters is shown to be consistent, and the asymptotic distribution for the estimators of the coefficients is shown to be Gaussian. The estimators of the change-points converge, with n ?1 rate, to the vector whose components are the left end points of the maximizing interval with respect to each change-point. The likelihood process is asymptotically equivalent to the sum of independent compound Poisson processes.  相似文献   

15.
The Rényi entropy is a generalisation of the Shannon entropy and is widely used in mathematical statistics and applied sciences for quantifying the uncertainty in a probability distribution. We consider estimation of the quadratic Rényi entropy and related functionals for the marginal distribution of a stationary m-dependent sequence. The U-statistic estimators under study are based on the number of ε-close vector observations in the corresponding sample. A variety of asymptotic properties for these estimators are obtained (e.g. consistency, asymptotic normality, and Poisson convergence). The results can be used in diverse statistical and computer science problems whenever the conventional independence assumption is too strong (e.g. ε-keys in time series databases and distribution identification problems for dependent samples).  相似文献   

16.
The ratio of the sample variance to the sample mean estimates a simple function of the parameter which measures the departure of the Poisson-Poisson from the Poisson distribution. Moment series to order n?24 are given for related estimators. In one case, exact integral formulations are given for the first two moments, enabling a comparison to be made between their asymptotic developments and a computer-oriented extended Taylor series (COETS) algorithm. The integral approach using generating functions is sketched out for the third and fourth moments. Levin's summation algorithm is used on the divergent series and comparative simulation assessments are given.  相似文献   

17.
For the hierarchical Poisson and gamma model, we calculate the Bayes posterior estimator of the parameter of the Poisson distribution under Stein's loss function which penalizes gross overestimation and gross underestimation equally and the corresponding Posterior Expected Stein's Loss (PESL). We also obtain the Bayes posterior estimator of the parameter under the squared error loss and the corresponding PESL. Moreover, we obtain the empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior by two methods. In numerical simulations, we have illustrated: The two inequalities of the Bayes posterior estimators and the PESLs; the moment estimators and the Maximum Likelihood Estimators (MLEs) are consistent estimators of the hyperparameters; the goodness-of-fit of the model to the simulated data. The numerical results indicate that the MLEs are better than the moment estimators when estimating the hyperparameters. Finally, we exploit the attendance data on 314 high school juniors from two urban high schools to illustrate our theoretical studies.  相似文献   

18.
We consider a log-linear model for survival data, where both the location and scale parameters depend on covariates, and the baseline hazard function is completely unspecified. This model provides the flexibility needed to capture many interesting features of survival data at a relatively low cost in model complexity. Estimation procedures are developed, and asymptotic properties of the resulting estimators are derived using empirical process theory. Finally, a resampling procedure is developed to estimate the limiting variances of the estimators. The finite sample properties of the estimators are investigated by way of a simulation study, and a practical application to lung cancer data is illustrated.  相似文献   

19.
This article focuses on the parameter estimation of experimental items/units from Weibull Poisson Model under progressive type-II censoring with binomial removals (PT-II CBRs). The expectation–maximization algorithm has been used for maximum likelihood estimators (MLEs). The MLEs and Bayes estimators have been obtained under symmetric and asymmetric loss functions. Performance of competitive estimators have been studied through their simulated risks. One sample Bayes prediction and expected experiment time have also been studied. Furthermore, through real bladder cancer data set, suitability of considered model and proposed methodology have been illustrated.  相似文献   

20.
The problem of estimating the Poisson mean is considered based on the two samples in the presence of uncertain prior information (not in the form of distribution) that two independent random samples taken from two possibly identical Poisson populations. The parameter of interest is λ1 from population I. Three estimators, i.e. the unrestricted estimator, restricted estimator and preliminary test estimator are proposed. Their asymptotic mean squared errors are derived and compared; parameter regions have been found for which restricted and preliminary test estimators are always asymptotically more efficient than the classical estimator. The relative dominance picture of the estimators is presented. Maximum and minimum asymptotic efficiencies of the estimators relative to the classical estimator are tabulated. A max-min rule for the size of the preliminary test is also discussed. A Monte Carlo study is presented to compare the performance of the estimator with that of Kale and Bancroft (1967).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号