首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a general parametric setup, a multivariate regression model is considered when responses may be missing at random while the explanatory variables and covariates are completely observed. Asymptotic optimality properties of maximum likelihood estimators for such models are linked to the Fisher information matrix for the parameters. It is shown that the information matrix is well defined for the missing-at-random model and that it plays the same role as in the complete-data linear models. Applications of the methodologic developments in hypothesis-testing problems, without any imputation of missing data, are illustrated. Some simulation results comparing the proposed method with Rubin's multiple imputation method are presented.  相似文献   

2.
In the paper the problem of nonlinear unbiased estimation of expectation in linear models is considered. The considerations are restricted to linear plus quadratic estimators with quadratic parts invariant under a group of translations. The one way classification model is considered in detail, for which an explicit formula for the locally best estimators is presented. A numerical evaluation of variances of the best estimators is given for some unbalanced one way classification models and compared with the variance of the ordinary linear estimators.  相似文献   

3.
Biased sampling occurs often in observational studies. With one biased sample, the problem of nonparametrically estimating both a target density function and a selection bias function is unidentifiable. This paper studies the nonparametric estimation problem when there are two biased samples that have some overlapping observations (i.e. recaptures) from a finite population. Since an intelligent subject sampled previously may experience a memory effect if sampled again, two general 2-stage models that incorporate both a selection bias and a possible memory effect are proposed. Nonparametric estimators of the target density, selection bias, and memory functions, as well as the population size are developed. Asymptotic properties of these estimators are studied and confidence bands for the selection function and memory function are provided. Our procedures are compared with those ignoring the memory effect or the selection bias in finite sample situations. A nonparametric model selection procedure is also given for choosing a model from the two 2-stage models and a mixture of these two models. Our procedures work well with or without a memory effect, and with or without a selection bias. The paper concludes with an application to a real survey data set.  相似文献   

4.
In the general linear model consider the experimental design problem for the Gauß-Markov estimator or least squares estimator when the observations are correlated. We prove new formulas for the efficiency of an exact design with respect to the D-criterion. For models with intercept term, for example, these formulas are useful to derive better lower bounds for the efficiency than the bounds recently given for an arbitrary linear model. These bounds are applied in examples to symmetrical regular circulants as covariance matrices. A byproduct of the investigations is some insight as to what kinds of designs might retain their optimality or high efficiency (for the uncorrelated homoscedastic case) under correlated observations.  相似文献   

5.
6.
The equality of ordinary least squares estimator (OLSE), best linear unbiased estimator (BLUE) and best linear unbiased predictor (BLUP) in the general linear model with new observations is investigated through matrix rank method, some new necessary and sufficient conditions are given.  相似文献   

7.
Proportional hazard models and models where the dependent variables follow a linear model are shown to be equivalent if and only if the hazard rate is the product of a non-negative periodic function and a Weibull factor. Estimates based on rank statistics are proposed for the parameters in the proportional hazard model.  相似文献   

8.
This article respectively provides sufficient conditions and necessary conditions of matrix linear estimators of an estimable parameter matrix linear function in multivariate linear models with and without the assumption that the underlying distribution is a normal one with completely unknown covariance matrix. In the latter model, a necessary and sufficient condition is given for matrix linear estimators to be admissible in the space of all matrix linear estimators under each of three different kinds of quadratic matrix loss functions, respectively. In the former model, a sufficient condition is first provided for matrix linear estimators to be admissible in the space of all matrix estimators having finite risks under each of the same loss functions, respectively. Furthermore in the former model, one of these sufficient conditions, correspondingly under one of the loss functions, is also proved to be necessary, if additional conditions are assumed.  相似文献   

9.
A log linear multivariate paired comparison model for ties is proposed in which the cell probabilities under independence are those given by Davidson (1970). Altham's (1970) generalized measure of association (iv) is used to compare the association structure between two models, one having full, the other having reduced association structure. Based on the model with reduced association structure, the analysis of data from a consumer preference experiment is presented.  相似文献   

10.
For randomly censored data, the authors propose a general class of semiparametric median residual life models. They incorporate covariates in a generalized linear form while leaving the baseline median residual life function completely unspecified. Despite the non‐identifiability of the survival function for a given median residual life function, a simple and natural procedure is proposed to estimate the regression parameters and the baseline median residual life function. The authors derive the asymptotic properties for the estimators, and demonstrate the numerical performance of the proposed method through simulation studies. The median residual life model can be easily generalized to model other quantiles, and the estimation method can also be applied to the mean residual life model. The Canadian Journal of Statistics 38: 665–679; 2010 © 2010 Statistical Society of Canada  相似文献   

11.
This article investigates the large sample interval mapping method for genetic trait loci (GTL) in a finite non-linear regression mixture model. The general model includes most commonly used kernel functions, such as exponential family mixture, logistic regression mixture and generalized linear mixture models, as special cases. The populations derived from either the backcross or intercross design are considered. In particular, unlike all existing results in the literature in the finite mixture models, the large sample results presented in this paper do not require the boundness condition on the parametric space. Therefore, the large sample theory presented in this article possesses general applicability to the interval mapping method of GTL in genetic research. The limiting null distribution of the likelihood ratio test statistics can be utilized easily to determine the threshold values or p-values required in the interval mapping. The limiting distribution is proved to be free of the parameter values of null model and free of the choice of a kernel function. Extension to the multiple marker interval GTL detection is also discussed. Simulation study results show favorable performance of the asymptotic procedure when sample sizes are moderate.  相似文献   

12.
We consider a general class of mixed models, where the individual parameter vector is composed of a linear function of the population parameter vector plus an individual random effects vector. The linear function can vary for the different individuals. We show that the search for optimal designs for the estimation of the population parameter vector can be restricted to the class of group-wise identical designs, i.e., for each of the groups defined by the different linear functions only one individual elementary design has to be optimized. A way to apply the result to non-linear mixed models is described.  相似文献   

13.
Joint modeling of degradation and failure time data   总被引:1,自引:0,他引:1  
This paper surveys some approaches to model the relationship between failure time data and covariate data like internal degradation and external environmental processes. These models which reflect the dependency between system state and system reliability include threshold models and hazard-based models. In particular, we consider the class of degradation–threshold–shock models (DTS models) in which failure is due to the competing causes of degradation and trauma. For this class of reliability models we express the failure time in terms of degradation and covariates. We compute the survival function of the resulting failure time and derive the likelihood function for the joint observation of failure times and degradation data at discrete times. We consider a special class of DTS models where degradation is modeled by a process with stationary independent increments and related to external covariates through a random time scale and extend this model class to repairable items by a marked point process approach. The proposed model class provides a rich conceptual framework for the study of degradation–failure issues.  相似文献   

14.
The aim of an experiment is often to enable discrimination between competing forms for a response model. We investigate the selection of a continuous design for a non-sequential strategy when there are two competing generalized linear models for a binomial response, with a common link function and the linear predictor of one model nested within that of the other. A new criterion, TETE-optimality, is defined, based on the difference in the deviances from the two models, and comparisons are made with TT-, DsDs- and DD-optimality. Issues are raised through the study of two examples in which designs are assessed using simulation studies of the power to reject the null hypothesis of the smaller model being correct, when the data are generated from the larger model. Parameter estimation for discrimination designs is also discussed and a simple method is investigated of combining designs to form a hybrid design in order to achieve both model discrimination and estimation. This method has a computational advantage over the use of a compound criterion and the similar performance of the designs obtained from the two approaches is illustrated in an example.  相似文献   

15.
Robust estimating equation based on statistical depth   总被引:2,自引:0,他引:2  
In this paper the estimating equation is constructed via statistical depth. The obtained estimating equation and parameter estimation have desirable robustness, which attain very high breakdown values close to 1/2. At the same time, the obtained parameter estimation still has ordinary asymptotic behaviours such as asymptotic normality. In particular, the robust quasi likelihood and depth-weighted LSE respectively for nonlinear and linear regression model are introduced. A suggestion for choosing weight function and a method of constructing depth-weighed quasi likelihood equation are given. This paper is supported by NNSF projects (10371059 and 10171051) of China.  相似文献   

16.
This paper is concerned with asymptotic distributions of functions of a sample covariance matrix under the elliptical model. Simple but useful formulae for calculating asymptotic variances and covariances of the functions are derived. Also, an asymptotic expansion formula for the expectation of a function of a sample covariance matrix is derived; it is given up to the second-order term with respect to the inverse of the sample size. Two examples are given: one of calculating the asymptotic variances and covariances of the stepdown multiple correlation coefficients, and the other of obtaining the asymptotic expansion formula for the moments of sample generalized variance.  相似文献   

17.
Lu Lin 《Statistical Papers》2004,45(4):529-544
The quasi-score function, as defined by Wedderburn (1974) and McCullagh (1983) and so on, is a linear function of observations. The generalized quasi-score function introduced in this paper is a linear function of some unbiased basis functions, where the unbiased basis functions may be some linear functions of the observations or not, and can be easily constructed by the meaning of the parameters such as mean and median and so on. The generalized quasi-likelihood estimate obtained by such a generalized quasi-score function is consistent and has an asymptotically normal distribution. As a result, the optimum generalized quasi-score is obtained and a method to construct the optimum unbiased basis function is introduced. In order to construct the potential function, a conservative generalized estimating function is defined. By conservative, a potential function for the projected score has many properties of a log-likelihood function. Finally, some examples are given to illustrate the theoretical results. This paper is supported by NNSF project (10371059) of China and Youth Teacher Foundation of Nankai University.  相似文献   

18.
In this paper we comment on and review some unexpected but interesting features of the BLUE (best linear unbiased estimator) of the expectation vector in the general linear model and in particular, the BLUE's covariance matrix. Most of these features appear in the literature but are rather scattered or hidden.  相似文献   

19.
This paper concerns a method of estimation of variance components in a random effect linear model. It is mainly a resampling method and relies on the Jackknife principle. The derived estimators are presented as least squares estimators in an appropriate linear model, and one of them appears as a MINQUE (Minimum Norm Quadratic Unbiased Estimation) estimator. Our resampling method is illustrated by an example given by C. R. Rao [7] and some optimal properties of our estimator are derived for this example. In the last part, this method is used to derive an estimation of variance components in a random effect linear model when one of the components is assumed to be known.  相似文献   

20.
We introduce and study a class of rank-based estimators for the linear model. The estimate may be roughly described as being calculated in the same manner as a generalized M-estimate, but with the residual being replaced by a function of its signed rank. The influence function can thus be bounded, both as a function of the residual and as a function of the carriers. Subject to such a bound, the efficiency at a particular model distribution can be optimized by appropriate choices of rank scores and carrier weights. Such choices are given, with respect to a variety of optimality criteria. We compare our estimates with several others, in a Monte Carlo study and on a real data set from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号