首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We use bias-reduced estimators of high quantiles of heavy-tailed distributions, to introduce a new estimator for the mean in the case of infinite second moment. The asymptotic normality of the proposed estimator is established and checked in a simulation study, by four of the most popular goodness-of-fit tests. The accuracy of the resulting confidence intervals is evaluated as well. We also investigate the finite sample behavior and compare our estimator with some versions of Peng's estimator of the mean (namely those based on Hill, t-Hill and Huisman et al. extreme value index estimators). Moreover, we discuss the robustness of the tail index estimators used in this paper. Finally, our estimation procedure is applied to the well-known Danish fire insurance claims data set, to provide confidence bounds for the means of weekly and monthly maximum losses over a period of 10 years.  相似文献   

2.
ABSTRACT

In this paper, we propose a parameter estimation method for the three-parameter lognormal distribution based on Type-II right censored data. In the proposed method, under mild conditions, the estimates always exist uniquely in the entire parameter space, and the estimators also have consistency over the entire parameter space. Through Monte Carlo simulations, we further show that the proposed method performs very well compared to a prominent method of estimation in terms of bias and root mean squared error (RMSE) in small-sample situations. Finally, two examples based on real data sets are presented for illustrating the proposed method.  相似文献   

3.
There are many estimators for population mean: arithmetic mean, median, root mean square, geometric mean, harmonic mean, and so forth. Which one is the best? Here, we answer this question given two measurements from a uniform distribution.  相似文献   

4.
This paper is devoted to the problem of estimating the square of population mean (μ2) in normal distribution when a prior estimate or guessed value σ0 2 of the population variance σ2 is available. We have suggested a family of shrinkage estimators , say, for μ2 with its mean squared error formula. A condition is obtained in which the suggested estimator is more efficient than Srivastava et al’s (1980) estimator Tmin. Numerical illustrations have been carried out to demonstrate the merits of the constructed estimator over Tmin. It is observed that some of these estimators offer improvements over Tmin particularly when the population is heterogeneous and σ2 is in the vicinity of σ0 2.  相似文献   

5.
This article suggests the class of estimators of population mean of study variable using various parameters related to an auxiliary variable with its properties in simple random sampling. It has been identified that the some existing estimator/classes of estimators are members of suggested class. It has been found theoretically as well as empirically that the suggested class is better than the existing methods.  相似文献   

6.
ABSTRACT

The generalized Pareto distribution (GPD) is important in the analysis of extreme values, especially in modeling exceedances over thresholds. Most of the existing methods for estimating the scale and shape parameters of the GPD suffer from theoretical and/or computational problems. A new hybrid estimation method is proposed in this article, which minimizes a goodness-of-fit measure and incorporates some useful likelihood information. Compared with the maximum likelihood method and other leading methods, our new hybrid estimation method retains high efficiency, reduces the estimation bias, and is computation friendly.  相似文献   

7.
A new biased estimator based on ridge estimation   总被引:3,自引:0,他引:3  
In this paper we introduce a new biased estimator for the vector of parameters in a linear regression model and discuss its properties. We show that our new biased estimator is superior, in the mean square error(mse) sense, to the ordinary least squares (OLS) estimator, the ordinary ridge regression (ORR) estimator and the Liu estimator. We also compare the performance of our new biased estimator with two other special Liu-type estimators proposed in Liu (2003). We illustrate our findings with a numerical example based on the widely analysed dataset on Portland cement.  相似文献   

8.
The method of target estimation developed by Cabrera and Fernholz [(1999). Target estimation for bias and mean square error reduction. The Annals of Statistics, 27(3), 1080–1104.] to reduce bias and variance is applied to logistic regression models of several parameters. The expectation functions of the maximum likelihood estimators for the coefficients in the logistic regression models of one and two parameters are analyzed and simulations are given to show a reduction in both bias and variability after targeting the maximum likelihood estimators. In addition to bias and variance reduction, it is found that targeting can also correct the skewness of the original statistic. An example based on real data is given to show the advantage of using target estimators for obtaining better confidence intervals of the corresponding parameters. The notion of the target median is also presented with some applications to the logistic models.  相似文献   

9.
ABSTRACT

The present work intends to put emphasis on the role of several auxiliary variables on both the occasions to improve the precision of estimates at current occasion in two-occasion successive sampling. Utilizing the readily available information on several auxiliary variables on both occasions and the information on study variable from the previous occasion, an efficient estimation procedure of population mean on current occasion has been suggested. Optimum replacement strategy and the efficiencies of the proposed estimator have been discussed. Empirical studies are carried out, and appropriate recommendations have been put forward for practical applications.  相似文献   

10.
Given a sample from a normal population unbiased estimators are obtained for positive powers of the mean and estimators of almost exponentially small bias are obtained for negative powers of the mean. Simulation studies show superior performance of these estimators versus known ones.  相似文献   

11.
The two parameter Gamma distribution is widely used for modeling lifetime distributions in reliability theory. There is much literature on the inference on the individual parameters of the Gamma distribution, namely the shape parameter k and the scale parameter θ when the other parameter is known. However, usually the reliability professionals have a major interest in making statistical inference about the mean lifetime μ, which equals the product θk for the Gamma distribution. The problem of inference on the mean μ when both parameters θ and k are unknown has been less attended in the literature for the Gamma distribution. In this paper we review the existing methods for interval estimation of μ. A comparative study in this paper indicates that the existing methods are either too approximate and yield less reliable confidence intervals or are computationally quite complicated and need advanced computing facilities. We propose a new simple method for interval estimation of the Gamma mean and compare its performance with the existing methods. The comparative study showed that the newly proposed computationally simple optimum power normal approximation method works best even for small sample sizes.  相似文献   

12.
In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value index—a primary parameter in statistics of extremes. A couple of refinements are proposed and a simulation study shows that these are able to achieve a lower mean square error. A real data illustration is also provided.  相似文献   

13.
Estimation of the Pareto tail index from extreme order statistics is an important problem in many settings. The upper tail of the distribution, where data are sparse, is typically fitted with a model, such as the Pareto model, from which quantities such as probabilities associated with extreme events are deduced. The success of this procedure relies heavily not only on the choice of the estimator for the Pareto tail index but also on the procedure used to determine the number k of extreme order statistics that are used for the estimation. The authors develop a robust prediction error criterion for choosing k and estimating the Pareto index. A Monte Carlo study shows the good performance of the new estimator and the analysis of real data sets illustrates that a robust procedure for selection, and not just for estimation, is needed.  相似文献   

14.
When a sufficient correlation between the study variable and the auxiliary variable exists, the ranks of the auxiliary variable are also correlated with the study variable, and thus, these ranks can be used as an effective tool in increasing the precision of an estimator. In this paper, we propose a new improved estimator of the finite population mean that incorporates the supplementary information in forms of: (i) the auxiliary variable and (ii) ranks of the auxiliary variable. Mathematical expressions for the bias and the mean-squared error of the proposed estimator are derived under the first order of approximation. The theoretical and empirical studies reveal that the proposed estimator always performs better than the usual mean, ratio, product, exponential-ratio and -product, classical regression estimators, and Rao (1991 Rao, T.J. (1991). On certail methods of improving ration and regression estimators. Commun. Stat. Theory Methods 20(10):33253340.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]), Singh et al. (2009 Singh, R., Chauhan, P., Sawan, N., Smarandache, F. (2009). Improvement in estimating the population mean using exponential estimator in simple random sampling. Int. J. Stat. Econ. 3(A09):1318. [Google Scholar]), Shabbir and Gupta (2010 Shabbir, J., Gupta, S. (2010). On estimating finite population mean in simple and stratified random sampling. Commun. Stat. Theory Methods 40(2):199212.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]), Grover and Kaur (2011 Grover, L.K., Kaur, P. (2011). An improved estimator of the finite population mean in simple random sampling. Model Assisted Stat. Appl. 6(1):4755. [Google Scholar], 2014) estimators.  相似文献   

15.
ABSTRACT

We derive analytic expressions for the biases, to O(n?1), of the maximum likelihood estimators of the parameters of the generalized Pareto distribution. Using these expressions to bias-correct the estimators in a selective manner is found to be extremely effective in terms of bias reduction, and can also result in a small reduction in relative mean squared error (MSE). In terms of remaining relative bias, the analytic bias-corrected estimators are somewhat less effective than their counterparts obtained by using a parametric bootstrap bias correction. However, the analytic correction out-performs the bootstrap correction in terms of remaining %MSE. It also performs credibly relative to other recently proposed estimators for this distribution. Taking into account the relative computational costs, this leads us to recommend the selective use of the analytic bias adjustment for most practical situations.  相似文献   

16.
The most popular approach in extreme value statistics is the modelling of threshold exceedances using the asymptotically motivated generalised Pareto distribution. This approach involves the selection of a high threshold above which the model fits the data well. Sometimes, few observations of a measurement process might be recorded in applications and so selecting a high quantile of the sample as the threshold leads to almost no exceedances. In this paper we propose extensions of the generalised Pareto distribution that incorporate an additional shape parameter while keeping the tail behaviour unaffected. The inclusion of this parameter offers additional structure for the main body of the distribution, improves the stability of the modified scale, tail index and return level estimates to threshold choice and allows a lower threshold to be selected. We illustrate the benefits of the proposed models with a simulation study and two case studies.  相似文献   

17.
18.
Estimating parameters in heavy-tailed distribution plays a central role in extreme value theory. It is well known that classical estimators based on the first order asymptotics such as the Hill, rank-based and QQ estimators are seriously biased under finer second order regular variation framework. To reduce the bias, many authors proposed the so-called second order reduced bias estimators for both first and second order tail parameters. In this work, estimation of parameters in heavy-tailed distributions are studied under the second order regular variation framework when the second order parameter in the distribution tail is known. This is motivated in large part by a recent work by the authors showing that the second order tail parameter is known for a large class of popular random difference equations (for example, ARCH models). The focus is on least squares estimators that generalize rank-based and QQ estimators. Though other possible estimators are also briefly discussed, the least squares estimators are most simple to use and perform best for finite samples in Monte Carlo simulations.  相似文献   

19.
20.
A double L ranked set sampling (DLRSS) method is suggested for estimating the population mean. The DLRSS is compared with the simple random sampling (SRS), ranked set sampling (RSS) and L ranked set sampling (LRSS) methods based on the same number of measured units. The conditions for which the suggested estimator performs better than the other estimators are derived. It is found that, the suggested DLRSS estimator is an unbiased of the population mean, and is more efficient than its counterparts using SRS, RSS, and LRSS methods. Real data sets are used for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号