首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. We investigate the operating characteristics of the Benjamini–Hochberg false discovery rate procedure for multiple testing. This is a distribution-free method that controls the expected fraction of falsely rejected null hypotheses among those rejected. The paper provides a framework for understanding more about this procedure. We first study the asymptotic properties of the `deciding point' D that determines the critical p -value. From this, we obtain explicit asymptotic expressions for a particular risk function. We introduce the dual notion of false non-rejections and we consider a risk function that combines the false discovery rate and false non-rejections. We also consider the optimal procedure with respect to a measure of conditional risk.  相似文献   

2.
Summary.  The use of a fixed rejection region for multiple hypothesis testing has been shown to outperform standard fixed error rate approaches when applied to control of the false discovery rate. In this work it is demonstrated that, if the original step-up procedure of Benjamini and Hochberg is modified to exercise adaptive control of the false discovery rate, its performance is virtually identical to that of the fixed rejection region approach. In addition, the dependence of both methods on the proportion of true null hypotheses is explored, with a focus on the difficulties that are involved in the estimation of this quantity.  相似文献   

3.
Summary. Multiple-hypothesis testing involves guarding against much more complicated errors than single-hypothesis testing. Whereas we typically control the type I error rate for a single-hypothesis test, a compound error rate is controlled for multiple-hypothesis tests. For example, controlling the false discovery rate FDR traditionally involves intricate sequential p -value rejection methods based on the observed data. Whereas a sequential p -value method fixes the error rate and estimates its corresponding rejection region, we propose the opposite approach—we fix the rejection region and then estimate its corresponding error rate. This new approach offers increased applicability, accuracy and power. We apply the methodology to both the positive false discovery rate pFDR and FDR, and provide evidence for its benefits. It is shown that pFDR is probably the quantity of interest over FDR. Also discussed is the calculation of the q -value, the pFDR analogue of the p -value, which eliminates the need to set the error rate beforehand as is traditionally done. Some simple numerical examples are presented that show that this new approach can yield an increase of over eight times in power compared with the Benjamini–Hochberg FDR method.  相似文献   

4.
5.
Summary.  To help to design vaccines for acquired immune deficiency syndrome that protect broadly against many genetic variants of the human immunodeficiency virus, the mutation rates at 118 positions in HIV amino-acid sequences of subtype C versus those of subtype B were compared. The false discovery rate (FDR) multiple-comparisons procedure can be used to determine statistical significance. When the test statistics have discrete distributions, the FDR procedure can be made more powerful by a simple modification. The paper develops a modified FDR procedure for discrete data and applies it to the human immunodeficiency virus data. The new procedure detects 15 positions with significantly different mutation rates compared with 11 that are detected by the original FDR method. Simulations delineate conditions under which the modified FDR procedure confers large gains in power over the original technique. In general FDR adjustment methods can be improved for discrete data by incorporating the modification proposed.  相似文献   

6.
A new control chart is developed by using the exponentially weighted moving average (EWMA) statistics and a multiple testing procedure for controlling false discovery rate. The multiple testing procedure considers not only the current EWMA statistic, but also a given number of previous statistics at the same time. Numerical simulations are accomplished to evaluate the performance of the proposed control chart in terms of the average run length and the conditional expected delay. The results are compared with those of the existing control charts including the X-bar chart, EWMA, and cumulative sum control charts. Case studies with real data-sets are also presented.  相似文献   

7.
In many scientific fields, it is interesting and important to determine whether an observed data stream comes from a prespecified model or not, particularly when the number of data streams is of large scale, where multiple hypotheses testing is necessary. In this article, we consider large-scale model checking under certain dependence among different data streams observed at the same time. We propose a false discovery rate (FDR) control procedure to check those unusual data streams. Specifically, we derive an approximation of false discovery and construct a point estimate of FDR. Theoretical results show that, under some mild assumptions, our proposed estimate of FDR is simultaneously conservatively consistent with the true FDR, and hence it is an asymptotically strong control procedure. Simulation comparisons with some competing procedures show that our proposed FDR procedure behaves better in general settings. Application of our proposed FDR procedure is illustrated by the StarPlus fMRI data.  相似文献   

8.
A Bayesian discovery procedure   总被引:1,自引:0,他引:1  
Summary.  We discuss a Bayesian discovery procedure for multiple-comparison problems. We show that, under a coherent decision theoretic framework, a loss function combining true positive and false positive counts leads to a decision rule that is based on a threshold of the posterior probability of the alternative. Under a semiparametric model for the data, we show that the Bayes rule can be approximated by the optimal discovery procedure, which was recently introduced by Storey. Improving the approximation leads us to a Bayesian discovery procedure, which exploits the multiple shrinkage in clusters that are implied by the assumed non-parametric model. We compare the Bayesian discovery procedure and the optimal discovery procedure estimates in a simple simulation study and in an assessment of differential gene expression based on microarray data from tumour samples. We extend the setting of the optimal discovery procedure by discussing modifications of the loss function that lead to different single-thresholding statistics. Finally, we provide an application of the previous arguments to dependent (spatial) data.  相似文献   

9.
In a breakthrough paper, Benjamini and Hochberg (J Roy Stat Soc Ser B 57:289–300, 1995) proposed a new error measure for multiple testing, the FDR; and developed a distribution-free procedure to control it under independence among the test statistics. In this paper we argue by extensive simulation and theoretical considerations that the assumption of independence is not needed. Along the lines of (Ann Stat 32:1035–1061, 2004b), we moreover provide a more powerful method, that exploits an estimator of the number of false nulls among the tests. We propose a whole family of iterative estimators that prove robust under dependence and independence between the test statistics. These estimators can be used to improve also classical multiple testing procedures, and in general to estimate the weight of a known component in a mixture distribution. Innovations are illustrated by simulations.  相似文献   

10.
Summary.  In high throughput genomic work, a very large number d of hypotheses are tested based on n ≪ d data samples. The large number of tests necessitates an adjustment for false discoveries in which a true null hypothesis was rejected. The expected number of false discoveries is easy to obtain. Dependences between the hypothesis tests greatly affect the variance of the number of false discoveries. Assuming that the tests are independent gives an inadequate variance formula. The paper presents a variance formula that takes account of the correlations between test statistics. That formula involves O ( d 2) correlations, and so a naïve implementation has cost O ( nd 2). A method based on sampling pairs of tests allows the variance to be approximated at a cost that is independent of d .  相似文献   

11.
In this paper we present a modification of the Benjamini and Hochberg false discovery rate controlling procedure for testing non-positive dependent test statistics. The new testing procedure makes use of the same series of linearly increasing critical values. Yet, in the new procedure the set of p-values is divided into subsets of positively dependent p-values, and each subset of p-values is separately sorted and compared to the series of critical values. In the first part of the paper we introduce the new testing methodology, discuss the technical issues needed to apply the new approach, and apply it to data from a genetic experiment.  相似文献   

12.
Microarray studies are now common for human, agricultural plant and animal studies. False discovery rate (FDR) is widely used in the analysis of large-scale microarray data to account for problems associated with multiple testing. A well-designed microarray study should have adequate statistical power to detect the differentially expressed (DE) genes, while keeping the FDR acceptably low. In this paper, we used a mixture model of expression responses involving DE genes and non-DE genes to analyse theoretical FDR and power for simple scenarios where it is assumed that each gene has equal error variance and the gene effects are independent. A simulation study was used to evaluate the empirical FDR and power for more complex scenarios with unequal error variance and gene dependence. Based on this approach, we present a general guide for sample size requirement at the experimental design stage for prospective microarray studies. This paper presented an approach to explicitly connect the sample size with FDR and power. While the methods have been developed in the context of one-sample microarray studies, they are readily applicable to two-sample, and could be adapted to multiple-sample studies.  相似文献   

13.
14.
In this note, we focus on estimating the false discovery rate (FDR) of a multiple testing method with a common, non-random rejection threshold under a mixture model. We develop a new class of estimates of the FDR and prove that it is less conservatively biased than what is traditionally used. Numerical evidence is presented to show that the mean squared error (MSE) is also often smaller for the present class of estimates, especially in small-scale multiple testings. A similar class of estimates of the positive false discovery rate (pFDR) less conservatively biased than what is usually used is then proposed. When modified using our estimate of the pFDR and applied to a gene-expression data, Storey's q-value method identifies a few more significant genes than his original q-value method at certain thresholds. The BH like method developed by thresholding our estimate of the FDR is shown to control the FDR in situations where the p  -values have the same dependence structure as required by the BH method and, for lack of information about the proportion π0π0 of true null hypotheses, it is reasonable to assume that π0π0 is uniformly distributed over (0,1).  相似文献   

15.
Statistical inference in the wavelet domain remains a vibrant area of contemporary statistical research because of desirable properties of wavelet representations and the need of scientific community to process, explore, and summarize massive data sets. Prime examples are biomedical, geophysical, and internet related data. We propose two new approaches to wavelet shrinkage/thresholding.

In the spirit of Efron and Tibshirani's recent work on local false discovery rate, we propose Bayesian Local False Discovery Rate (BLFDR), where the underlying model on wavelet coefficients does not assume known variances. This approach to wavelet shrinkage is shown to be connected with shrinkage based on Bayes factors. The second proposal, Bayesian False Discovery Rate (BaFDR), is based on ordering of posterior probabilities of hypotheses on true wavelets coefficients being null, in Bayesian testing of multiple hypotheses.

We demonstrate that both approaches result in competitive shrinkage methods by contrasting them to some popular shrinkage techniques.  相似文献   

16.
A false discovery rate (FDR) procedure is often employed in exploratory data analysis to determine which among thousands or millions of attributes are worthy of follow-up analysis. However, these methods tend to discover the most statistically significant attributes, which need not be the most worthy of further exploration. This article provides a new FDR-controlling method that allows for the nature of the exploratory analysis to be considered when determining which attributes are discovered. To illustrate, a study in which the objective is to classify discoveries into one of several clusters is considered, and a new FDR method that minimizes the misclassification rate is developed. It is shown analytically and with simulation that the proposed method performs better than competing methods.  相似文献   

17.
18.
The idea of modifying, and potentially improving, classical multiple testing methods controlling the familywise error rate (FWER) via an estimate of the unknown number of true null hypotheses has been around for a long time without a formal answer to the question whether or not such adaptive methods ultimately maintain the strong control of FWER, until Finner and Gontscharuk (2009) and Guo (2009) have offered some answers. A class of adaptive Bonferroni and S?idàk methods larger than considered in those papers is introduced, with the FWER control now proved under a weaker distributional setup. Numerical results show that there are versions of adaptive Bonferroni and S?idàk methods that can perform better under certain positive dependence situations than those previously considered. A different adaptive Holm method and its stepup analog, referred to as an adaptive Hochberg method, are also introduced, and their FWER control is proved asymptotically, as in those papers. These adaptive Holm and Hochberg methods are numerically seen to often outperform the previously considered adaptive Holm method.  相似文献   

19.
Summary.  The false discovery rate (FDR) is a multiple hypothesis testing quantity that describes the expected proportion of false positive results among all rejected null hypotheses. Benjamini and Hochberg introduced this quantity and proved that a particular step-up p -value method controls the FDR. Storey introduced a point estimate of the FDR for fixed significance regions. The former approach conservatively controls the FDR at a fixed predetermined level, and the latter provides a conservatively biased estimate of the FDR for a fixed predetermined significance region. In this work, we show in both finite sample and asymptotic settings that the goals of the two approaches are essentially equivalent. In particular, the FDR point estimates can be used to define valid FDR controlling procedures. In the asymptotic setting, we also show that the point estimates can be used to estimate the FDR conservatively over all significance regions simultaneously, which is equivalent to controlling the FDR at all levels simultaneously. The main tool that we use is to translate existing FDR methods into procedures involving empirical processes. This simplifies finite sample proofs, provides a framework for asymptotic results and proves that these procedures are valid even under certain forms of dependence.  相似文献   

20.
Recently, the field of multiple hypothesis testing has experienced a great expansion, basically because of the new methods developed in the field of genomics. These new methods allow scientists to simultaneously process thousands of hypothesis tests. The frequentist approach to this problem is made by using different testing error measures that allow to control the Type I error rate at a certain desired level. Alternatively, in this article, a Bayesian hierarchical model based on mixture distributions and an empirical Bayes approach are proposed in order to produce a list of rejected hypotheses that will be declared significant and interesting for a more detailed posterior analysis. In particular, we develop a straightforward implementation of a Gibbs sampling scheme where all the conditional posterior distributions are explicit. The results are compared with the frequentist False Discovery Rate (FDR) methodology. Simulation examples show that our model improves the FDR procedure in the sense that it diminishes the percentage of false negatives keeping an acceptable percentage of false positives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号