首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Latin squares have been widely used to design an experiment where the blocking factors and treatment factors have the same number of levels. For some experiments, the size of blocks may be less than the number of treatments. Since not all the treatments can be compared within each block, a new class of designs called balanced incomplete Latin squares (BILS) is proposed. A general method for constructing BILS is proposed by an intelligent selection of certain cells from a complete Latin square via orthogonal Latin squares. The optimality of the proposed BILS designs is investigated. It is shown that the proposed transversal BILS designs are asymptotically optimal for all the row, column and treatment effects. The relative efficiencies of a delete-one-transversal BILS design with respect to the optimal designs for both cases are also derived; it is shown to be close to 100%, as the order becomes large.  相似文献   

2.
《Statistics》2012,46(6):1357-1385
ABSTRACT

The early stages of many real-life experiments involve a large number of factors among which only a few factors are active. Unfortunately, the optimal full-dimensional designs of those early stages may have bad low-dimensional projections and the experimenters do not know which factors turn out to be important before conducting the experiment. Therefore, designs with good projections are desirable for factor screening. In this regard, significant questions are arising such as whether the optimal full-dimensional designs have good projections onto low dimensions? How experimenters can measure the goodness of a full-dimensional design by focusing on all of its projections?, and are there linkages between the optimality of a full-dimensional design and the optimality of its projections? Through theoretical justifications, this paper tries to provide answers to these interesting questions by investigating the construction of optimal (average) projection designs for screening either nominal or quantitative factors. The main results show that: based on the aberration and orthogonality criteria the full-dimensional design is optimal if and only if it is optimal projection design; the full-dimensional design is optimal via the aberration and orthogonality if and only if it is uniform projection design; there is no guarantee that a uniform full-dimensional design is optimal projection design via any criterion; the projection design is optimal via the aberration, orthogonality and uniformity criteria if it is optimal via any criterion of them; and the saturated orthogonal designs have the same average projection performance.  相似文献   

3.
Super-saturated designs in which the number of factors under investigation exceeds the number of experimental runs have been suggested for screening experiments initiated to identify important factors for future study. Most of the designs suggested in the literature are based on natural but ad hoc criteria. The “average s2” criteria introduced by Booth and Cox (Technometrics 4 (1962) 489) is a popular choice. Here, a decision theoretic approach is pursued leading to an optimality criterion based on misclassification probabilities in a Bayesian model. In certain cases, designs optimal under the average s2 criterion are also optimal for the new criterion. Necessary conditions for this to occur are presented. In addition, the new criterion often provides a strict preference between designs tied under the average s2 criterion, which is advantageous in numerical search as it reduces the number of local minima.  相似文献   

4.
We introduce new criteria for model discrimination and use these and existing criteria to evaluate standard orthogonal designs. We show that the capability of orthogonal designs for model discrimination is surprisingly varied. In fact, for specified sample sizes, number of factors, and model spaces, many orthogonal designs are not model discriminating by the definition given in this paper, while others in the same class of orthogonal designs are. We also use these criteria to construct optimal two-level model-discriminating designs for screening experiments. The efficacy of these designs is studied, both in terms of estimation efficiency and discrimination success. Simulation studies indicate that the constructed designs result in substantively higher likelihoods of identifying the correct model.  相似文献   

5.
This article proposes an algorithm to construct efficient balanced multi-level k-circulant supersaturated designs with m factors and n runs. The algorithm generates efficient balanced multi-level k-circulant supersaturated designs very fast. Using the proposed algorithm many balanced multi-level supersaturated designs are constructed and cataloged. A list of many optimal and near optimal, multi-level supersaturated designs is also provided for m ≤ 60 and number of levels (q) ≤10. The algorithm can be used to generate two-level k-circulant supersaturated designs also and some large optimal two-level supersaturated designs are presented. An upper bound to the number of factors in a balanced multi-level supersaturated design such that no two columns are fully aliased is also provided.  相似文献   

6.
Optimal designs are presented for experiments in which sampling is carried out in stages. There are two Bernoulli populations and it is assumed that the outcomes of the previous stage are available before the sampling design for the next stage is determined. At each stage, the design specifies the number of observations to be taken and the relative proportion to be sampled from each population. Of particular interest are 2- and 3-stage designs.To illustrate that the designs can be used for experiments of useful sample sizes, they are applied to estimation and optimization problems. Results indicate that, for problems of moderate size, published asymptotic analyses do not always represent the true behavior of the optimal stage sizes, and efficiency may be lost if the analytical results are used instead of the true optimal allocation.The exactly optimal few stage designs discussed here are generated computationally, and the examples presented indicate the ease with which this approach can be used to solve problems that present analytical difficulties. The algorithms described are flexible and provide for the accurate representation of important characteristics of the problem.  相似文献   

7.
Two-colour microarray experiments form an important tool in gene expression analysis. Due to the high risk of missing observations in microarray experiments, it is fundamental to concentrate not only on optimal designs but also on designs which are robust against missing observations. As an extension of Latif et al. (2009), we define the optimal breakdown number for a collection of designs to describe the robustness, and we calculate the breakdown number for various D-optimal block designs. We show that, for certain values of the numbers of treatments and arrays, the designs which are D-optimal have the highest breakdown number. Our calculations use methods from graph theory.  相似文献   

8.
In the common linear model with quantitative predictors we consider the problem of designing experiments for estimating the slope of the expected response in a regression. We discuss locally optimal designs, where the experimenter is only interested in the slope at a particular point, and standardized minimax optimal designs, which could be used if precise estimation of the slope over a given region is required. General results on the number of support points of locally optimal designs are derived if the regression functions form a Chebyshev system. For polynomial regression and Fourier regression models of arbitrary degree the optimal designs for estimating the slope of the regression are determined explicitly for many cases of practical interest.  相似文献   

9.
A common strategy for avoiding information overload in multi-factor paired comparison experiments is to employ pairs of options which have different levels for only some of the factors in a study. For the practically important case where the factors fall into three groups such that all factors within a group have the same number of levels and where one is only interested in estimating the main effects, a comprehensive catalogue of D-optimal approximate designs is presented. These optimal designs use at most three different types of pairs and have a block diagonal information matrix.  相似文献   

10.
A new design criterion based on the condition number of an information matrix is proposed to construct optimal designs for linear models, and the resulting designs are called K-optimal designs. The relationship between exact and asymptotic K-optimal designs is derived. Since it is usually hard to find exact optimal designs analytically, we apply a simulated annealing algorithm to compute K-optimal design points on continuous design spaces. Specific issues are addressed to make the algorithm effective. Through exact designs, we can examine some properties of the K-optimal designs such as symmetry and the number of support points. Examples and results are given for polynomial regression models and linear models for fractional factorial experiments. In addition, K-optimal designs are compared with A-optimal and D-optimal designs for polynomial regression models, showing that K-optimal designs are quite similar to A-optimal designs.  相似文献   

11.
Summary.  Designs for two-colour microarray experiments can be viewed as block designs with two treatments per block. Explicit formulae for the A- and D-criteria are given for the case that the number of blocks is equal to the number of treatments. These show that the A- and D-optimality criteria conflict badly if there are 10 or more treatments. A similar analysis shows that designs with one or two extra blocks perform very much better, but again there is a conflict between the two optimality criteria for moderately large numbers of treatments. It is shown that this problem can be avoided by slightly increasing the number of blocks. The two colours that are used in each block effectively turn the block design into a row–column design. There is no need to use a design in which every treatment has each colour equally often: rather, an efficient row–column design should be used. For odd replication, it is recommended that the row–column design should be based on a bipartite graph, and it is proved that the optimal such design corresponds to an optimal block design for half the number of treatments. Efficient row–column designs are given for replications 3–6. It is shown how to adapt them for experiments in which some treatments have replication only 2.  相似文献   

12.
The long computational time required in constructing optimal designs for computer experiments has limited their uses in practice. In this paper, a new algorithm for constructing optimal experimental designs is developed. There are two major developments involved in this work. One is on developing an efficient global optimal search algorithm, named as enhanced stochastic evolutionary (ESE) algorithm. The other is on developing efficient methods for evaluating optimality criteria. The proposed algorithm is compared to existing techniques and found to be much more efficient in terms of the computation time, the number of exchanges needed for generating new designs, and the achieved optimality criteria. The algorithm is also very flexible to construct various classes of optimal designs to retain certain desired structural properties.  相似文献   

13.
Efforts have been made in the literature to find optimal single arrays which work best for the robust parameter experiments. However, examples show that in many cases the optimal designs obtained by the existing criteria cloud not attain the maximum number of clear interested effects for robust parameter experiments. In this paper, through a similar way of Zhang et al. (2008) (ZLZA, in short), an aliasing pattern to measure the confounding between the interested effects and other effects for the case of robust parameter designs is introduced. A new criterion for selecting optimal two-level regular single arrays is proposed. In the consideration of the criterion, two rank-orders of effects are suggested: one is based on the interest of experimenters and the other is under the usual effect hierarchy principle. The optimal designs are tabulated in the appendix.  相似文献   

14.
Under some very reasonable hypotheses, it becomes evident that randomizing the run order of a factorial experiment does not always neutralize the effect of undesirable factors. Yet, these factors do have an influence on the response, depending on the order in which the experiments are conducted. On the other hand, changing the factor levels is many times costly; therefore it is not reasonable to leave to chance the number of changes necessary. For this reason, run orders that offer the minimum number of factor level changes and at the same time minimize the possible influence of undesirable factors on the experimentation have been sought. Sequences which are known to produce the desired properties in designs with 8 and 16 experiments can be found in the literature. In this paper, we provide the best possible sequences for designs with 32 experiments, as well as sequences that offer excellent properties for designs with 64 and 128 experiments. The method used to find them is based on a mixture of algorithmic searches and an augmentation of smaller designs.  相似文献   

15.
It is well known that many industrial experiments have split‐plot structures. Compared to completely randomised experiments, split‐plot designs are more economical and thus have received much attention among researchers. Much work has been done for two‐level split‐plot designs. In this article, we consider split‐plot designs with factors of three, more than three, or mixed levels and with both qualitative and quantitative factors. We show that if two designs with both qualitative and quantitative factors are geometrically isomorphic, then their generalised wordlength patterns are identical. Three design scenarios are considered for optimal designs. The corresponding wordlength patterns are defined and the minimum aberration mixed‐level split‐plot designs having 18 and 36 runs are tabulated.  相似文献   

16.
Screening is the first stage of many industrial experiments and is used to determine efficiently and effectively a small number of potential factors among a large number of factors which may affect a particular response. In a recent paper, Jones and Nachtsheim [A class of three-level designs for definitive screening in the presence of second-order effects. J. Qual. Technol. 2011;43:1–15] have given a class of three-level designs for screening in the presence of second-order effects using a variant of the coordinate exchange algorithm as it was given by Meyer and Nachtsheim [The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 1995;37:60–69]. Xiao et al. [Constructing definitive screening designs using conference matrices. J. Qual. Technol. 2012;44:2–8] have used conference matrices to construct definitive screening designs with good properties. In this paper, we propose a method for the construction of efficient three-level screening designs based on weighing matrices and their complete foldover. This method can be considered as a generalization of the method proposed by Xiao et al. [Constructing definitive screening designs using conference matrices. J. Qual. Technol. 2012;44:2–8]. Many new orthogonal three-level screening designs are constructed and their properties are explored. These designs are highly D-efficient and provide uncorrelated estimates of main effects that are unbiased by any second-order effect. Our approach is relatively straightforward and no computer search is needed since our designs are constructed using known weighing matrices.  相似文献   

17.
We consider circular block designs for field-trials when there are two-sided spatial interference between neighbouring plots of the same blocks. The parameter of interest is total effects that is the sum of direct effect of treatment and neighbour effects, which correspond to the use of a single treatment in the whole field. We determine universally optimal approximate designs. When the number of blocks may be large, we propose efficient exact designs generated by a single sequence of treatment. We also give efficiency factors of the usual binary block neighbour balanced designs which can be used when the number of blocks is small.  相似文献   

18.
For ethical reasons it is important to try to obtain as much useful information as possible from an animal experiment whilst minimizing the number of animals used. Crossover designs, where applicable, provide an ideal framework for achieving this. If two or more treatment factors are included in the crossover design then the reduction in total animal usage can be considerable. In this paper we consider such designs, defined as multi-factor crossover designs. The designs are applicable when there are several different treatment factors, each at t levels, to be applied to the experimental units. The motivation for investigating these designs was a study conducted at GlaxoSmithKline to determine the preference of male and female dogs for t=5 different types of bed and t=5 different bedding conditions. A construction method is given for forming universally optimal designs for t not too large. Also given is an example for the special case where the number of treatment levels t=6.  相似文献   

19.
Most of today’s complex systems and processes involve several stages through which input or the raw material has to go before the final product is obtained. Also in many cases factors at different stages interact. Therefore, a holistic approach for experimentation that considers all stages at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based on the Kronecker product representation of orthogonal designs and can be used for any number of stages, for various numbers of subplots and for different number of subplots for each stage. The procedure is demonstrated on both regular and nonregular designs and provides the maximum number of factors that can be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided.  相似文献   

20.
A supersaturated design is a factorial design in which the number of effects to be estimated is greater than the available number of experimental runs. It is used in many experiments for screening purposes, i.e., for studying a large number of factors and then identifying the active ones. The goal with such a design is to identify just a few of the factors under consideration, that have dominant effects and to do this at minimum cost. While most of the literature on supersaturated designs has focused on the construction of designs and their optimality, the data analysis of such designs remains still at an early stage. In this paper, we incorporate the parameter model complexity into the supersaturated design analysis process, by assuming generalized linear models for a Bernoulli response, for analyzing main effects designs and discovering simultaneously the effects that are significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号