共查询到20条相似文献,搜索用时 9 毫秒
1.
In reliability and life-testing experiments, the researcher is often interested in the effects of extreme or varying stress factors such as temperature, voltage and load on the lifetimes of experimental units. Step-stress test, which is a special class of accelerated life-tests, allows the experimenter to increase the stress levels at fixed times during the experiment in order to obtain information on the parameters of the life distributions more quickly than under normal operating conditions. In this paper, we consider a new step-stress model in which the life-testing experiment gets terminated either at a pre-fixed time (say, Tm+1) or at a random time ensuring at least a specified number of failures (say, r out of n). Under this model in which the data obtained are Type-II hybrid censored, we consider the case of exponential distribution for the underlying lifetimes. We then derive the maximum likelihood estimators (MLEs) of the parameters assuming a cumulative exposure model with lifetimes being exponentially distributed. The exact distributions of the MLEs of parameters are obtained through the use of conditional moment generating functions. We also derive confidence intervals for the parameters using these exact distributions, asymptotic distributions of the MLEs and the parametric bootstrap methods, and assess their performance through a Monte Carlo simulation study. Finally, we present two examples to illustrate all the methods of inference discussed here. 相似文献
2.
In reliability analysis, accelerated life-testing allows for gradual increment of stress levels on test units during an experiment. In a special class of accelerated life tests known as step-stress tests, the stress levels increase discretely at pre-fixed time points, and this allows the experimenter to obtain information on the parameters of the lifetime distributions more quickly than under normal operating conditions. Moreover, when a test unit fails, there are often more than one fatal cause for the failure, such as mechanical or electrical. In this article, we consider the simple step-stress model under Type-II censoring when the lifetime distributions of the different risk factors are independently exponentially distributed. Under this setup, we derive the maximum likelihood estimators (MLEs) of the unknown mean parameters of the different causes under the assumption of a cumulative exposure model. The exact distributions of the MLEs of the parameters are then derived through the use of conditional moment generating functions. Using these exact distributions as well as the asymptotic distributions and the parametric bootstrap method, we discuss the construction of confidence intervals for the parameters and assess their performance through Monte Carlo simulations. Finally, we illustrate the methods of inference discussed here with an example. 相似文献
3.
This paper derives the exact confidence intervals for the exponential step-stress accelerated life-testing model as well as the approximate confidence intervals for the k-step exponential step-stress accelerated life-testing model under progressive Type-II censoring. A Monte Carlo simulation study is carried out to examine the performance of these confidence intervals. Finally, an example is given to illustrate the proposed procedures. 相似文献
4.
In this paper, we consider the simple step-stress model for a two-parameter exponential distribution, when both the parameters are unknown and the data are Type-II censored. It is assumed that under two different stress levels, the scale parameter only changes but the location parameter remains unchanged. It is observed that the maximum likelihood estimators do not always exist. We obtain the maximum likelihood estimates of the unknown parameters whenever they exist. We provide the exact conditional distributions of the maximum likelihood estimators of the scale parameters. Since the construction of the exact confidence intervals is very difficult from the conditional distributions, we propose to use the observed Fisher Information matrix for this purpose. We have suggested to use the bootstrap method for constructing confidence intervals. Bayes estimates and associated credible intervals are obtained using the importance sampling technique. Extensive simulations are performed to compare the performances of the different confidence and credible intervals in terms of their coverage percentages and average lengths. The performances of the bootstrap confidence intervals are quite satisfactory even for small sample sizes. 相似文献
5.
A step-stress model has received a considerable amount of attention in recent years. In the usual step-stress experiment, a stress level is allowed to increase at each step to get rapid failure of the experimental units. The expected lifetime of the experimental unit is shortened as the stress level increases. Although extensive amount of work has been done on step-stress models, not enough attention has been paid to analyze step-stress models incorporating this information. We consider a simple step-stress model and provide Bayesian inference of the unknown parameters under cumulative exposure model assumption. It is assumed that the lifetime of the experimental units are exponentially distributed with different scale parameters at different stress levels. It is further assumed that the stress level increases at each step, hence the expected lifetime decreases. We try to incorporate this restriction using the prior assumptions. It is observed that different censoring schemes can be incorporated very easily under a general setup. Monte Carlo simulations have been performed to see the effectiveness of the proposed method, and two datasets have been analyzed for illustrative purposes. 相似文献
6.
In this paper, a k -step-stress accelerated life-testing is considered with an equal step duration τ. For small to moderate sample sizes, a practical modification is made to the model previously considered by Gouno et al. [2004. Optimal step-stress test under progressive Type-I censoring. IEEE Trans. Reliability 53, 383–393] in order to guarantee a feasible k -step-stress test under progressive Type-I censoring, and the optimal τ is determined under this model. Next, we discuss the determination of optimal τ under the condition that the step-stress test proceeds to the k -th stress level, and the efficiency of this conditional inference is compared to that of the previous case. In all cases considered, censoring is allowed at each point of stress change (viz., iτ, i=1,2,…,k). The determination of optimal τ is discussed under C-optimality, D-optimality, and A-optimality criteria. We investigate in detail the case of progressively Type-I right censored data from an exponential distribution with a single stress variable. 相似文献
7.
By running the life tests at higher stress levels than normal operating conditions, accelerated life testing quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant-stress testing, a unit is tested at a fixed stress level until failure or the termination time point of the test, while step-stress testing allows the experimenter to gradually increase the stress levels at some pre-fixed time points during the test. In this article, the optimal k-level constant-stress and step-stress accelerated life tests are compared for the exponential failure data under Type-I censoring. The objective is to quantify the advantage of using the step-stress testing relative to the constant-stress one. A log-linear relationship between the mean lifetime parameter and stress level is assumed and the cumulative exposure model holds for the effect of changing stress in step-stress testing. The optimal design point is then determined under C-optimality, D-optimality, and A-optimality criteria. The efficiency of step-stress testing compared to constant-stress testing is discussed in terms of the ratio of optimal objective functions based on the information matrix. 相似文献
8.
Fariba Hemmati 《统计学通讯:模拟与计算》2017,46(6):4671-4693
In this article, a competing risks model based on exponential distributions is considered under the adaptive Type-II progressively censoring scheme introduced by Ng et al. [2009, Naval Research Logistics 56:687-698], for life testing or reliability experiment. Moreover, we assumed that some causes of failures are unknown. The maximum likelihood estimators (MLEs) of unknown parameters are established. The exact conditional and the asymptotic distributions of the obtained estimators are derived to construct the confidence intervals as well as the two different bootstraps of different unknown parameters. Under suitable priors on the unknown parameters, Bayes estimates and the corresponding two sides of Bayesian probability intervals are obtained. Also, for the purpose of evaluating the average bias and mean square error of the MLEs, and comparing the confidence intervals based on all mentioned methods, a simulation study was carried out. Finally, we present one real dataset to conduct the proposed methods. 相似文献
9.
《Journal of the Korean Statistical Society》2019,48(3):340-355
We propose an approach to determine the distribution of particular linear combinations of hybrid censored order statistics which is based on the calculation of volumes of polytopes. For this purpose, we establish efficient and compact volume formulas in terms of B-splines. Further, we illustrate our approach for ten different progressive hybrid censoring schemes under an exponential assumption. 相似文献
10.
In this paper, we present a statistical inference procedure for the step-stress accelerated life testing (SSALT) model with Weibull failure time distribution and interval censoring via the formulation of generalized linear model (GLM). The likelihood function of an interval censored SSALT is in general too complicated to obtain analytical results. However, by transforming the failure time to an exponential distribution and using a binomial random variable for failure counts occurred in inspection intervals, a GLM formulation with a complementary log-log link function can be constructed. The estimations of the regression coefficients used for the Weibull scale parameter are obtained through the iterative weighted least square (IWLS) method, and the shape parameter is updated by a direct maximum likelihood (ML) estimation. The confidence intervals for these parameters are estimated through bootstrapping. The application of the proposed GLM approach is demonstrated by an industrial example. 相似文献
11.
Tsai-Hung Fan Wan-Lun Wang N. Balakrishnan 《Journal of statistical planning and inference》2008,138(8):2340-2354
In order to quickly extract information on the life of a product, accelerated life-tests are usually employed. In this article, we discuss a k-stage step-stress accelerated life-test with M-stress variables when the underlying data are progressively Type-I group censored. The life-testing model assumed is an exponential distribution with a link function that relates the failure rate and the stress variables in a linear way under the Box–Cox transformation, and a cumulative exposure model for modelling the effect of stress changes. The classical maximum likelihood method as well as a fully Bayesian method based on the Markov chain Monte Carlo (MCMC) technique is developed for inference on all the parameters of this model. Numerical examples are presented to illustrate all the methods of inference developed here, and a comparison of the ML and Bayesian methods is also carried out. 相似文献
12.
A. R. Shafay 《统计学通讯:模拟与计算》2016,45(1):181-206
In this article, the simple step-stress model is considered based on generalized Type-I hybrid censored data from the exponential distribution. The maximum likelihood estimators (MLEs) of the unknown parameters are derived assuming a cumulative exposure model. We then derive the exact distributions of the MLEs of the parameters using conditional moment generating functions. The Bayesian estimators of the parameters are derived and then compared with the MLEs. We also derive confidence intervals for the parameters using these exact distributions, asymptotic distributions of the MLEs, Bayesian, and the parametric bootstrap methods. The problem of determining the optimal stress-changing point is discussed and the MLEs of the pth quantile and reliability functions at the use condition are obtained. Finally, Monte Carlo simulation and some numerical results are presented for illustrating all the inferential methods developed here. 相似文献
13.
The cumulative exposure model (CEM) is a commonly used statistical model utilized to analyze data from a step-stress accelerated life testing which is a special class of accelerated life testing (ALT). In practice, researchers conduct ALT to: (1) determine the effects of extreme levels of stress factors (e.g., temperature) on the life distribution, and (2) to gain information on the parameters of the life distribution more rapidly than under normal operating (or environmental) conditions. In literature, researchers assume that the CEM is from well-known distributions, such as the Weibull family. This study, on the other hand, considers a p-step-stress model with q stress factors from the two-parameter Birnbaum-Saunders distribution when there is a time constraint on the duration of the experiment. In this comparison paper, we consider different frameworks to numerically compute the point estimation for the unknown parameters of the CEM using the maximum likelihood theory. Each framework implements at least one optimization method; therefore, numerical examples and extensive Monte Carlo simulations are considered to compare and numerically examine the performance of the considered estimation frameworks. 相似文献
14.
Inference for a Simple Step-Stress Model with Type-I Censoring and Lognormally Distributed Lifetimes
Accelerated life-testing (ALT) is a very useful technique for examining the reliability of highly reliable products. It allows the experimenter to obtain failure data more quickly at increased stress levels than under normal operating conditions. A step-stress model is one special class of ALT, and in this article we consider a simple step-stress model under the cumulative exposure model with lognormally distributed lifetimes in the presence of Type-I censoring. We then discuss inferential methods for the unknown parameters of the model by the maximum likelihood estimation method. Some numerical methods, such as the Newton–Raphson and quasi-Newton methods, are discussed for solving the corresponding non-linear likelihood equations. Next, we discuss the construction of confidence intervals for the unknown parameters based on (i) the asymptotic normality of the maximum likelihood estimators (MLEs), and (ii) parametric bootstrap resampling technique. A Monte Carlo simulation study is carried out to examine the performance of these methods of inference. Finally, a numerical example is presented in order to illustrate all the methods of inference developed here. 相似文献
15.
A. GangulyS. Mitra D. SamantaD. Kundu 《Journal of statistical planning and inference》2012,142(3):613-625
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes. 相似文献
16.
《Journal of Statistical Computation and Simulation》2012,82(10):2036-2052
ABSTRACTDistributions of the maximum likelihood estimators (MLEs) in Type-II (progressive) hybrid censoring based on two-parameter exponential distributions have been obtained using a moment generating function approach. Although resulting in explicit expressions, the representations are complicated alternating sums. Using the spacings-based approach of Cramer and Balakrishnan [On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions. Statist Methodol. 2013;10:128–150], we derive simple expressions for the exact density and distribution functions of the MLEs in terms of B-spline functions. These representations can be easily implemented on a computer and provide an efficient method to compute density and distribution functions as well as moments of Type-II (progressively) hybrid censored order statistics. 相似文献
17.
In this paper, the problem of constant partially accelerated life tests when the lifetime follows the generalized exponential distribution is considered. Based on progressive type-II censoring scheme, the maximum likelihood and Bayes methods of estimation are used for estimating the distribution parameters and acceleration factor. A Monte Carlo simulation study is carried out to examine the performance of the obtained estimates. 相似文献
18.
In this article, we consider a modified version of logarithmic series distribution and study some of its properties. The maximum likelihood estimation of the parameters of the modified distribution is discussed and the distribution has been fitted to certain real life data sets. Tests are also carried out for justifying the significance of the additional parameter of the modified distribution. 相似文献
19.
20.
Vincent Couallier Laurent Denis Vilijandas Bagdonavičius Mikhail Nikulin Léo Gerville-Réache 《Journal of statistical planning and inference》2009
The objective of this paper is to model the phenomenon of degradation-to-failure for assemblies used for lumbar arthrodesis, starting from the analysis of their structure/geometry, the load applied and the kind of failure when several occur. An AFT model is proposed to model the joint effects of the applied load and the structural dimensions of the brand (namely length and diameter of the screw, presence of a connector or not) on the failure time due to a screw failure. The estimations of S–N curves and maximum permissible load (named critical load) values are provided as functions of the structural dimensions of the product. This allows comparisons of devices in terms of key factors determining product behavior and ageing under loading stress. 相似文献