首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bias reduction estimation for tail index has been studied in the literature. One method is to reduce bias with an external estimator of the second order regular variation parameter; see Gomes and Martins [2002. Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter. Extremes 5(1), 5–31]. It is known that negative extreme value index implies that the underlying distribution has a finite right endpoint. As far as we know, there exists no bias reduction estimator for the endpoint of a distribution. In this paper, we study the bias reduction method with an external estimator of the second order parameter for both the negative extreme value index and endpoint simultaneously. Surprisingly, we find that this bias reduction method for negative extreme value index requires a larger order of sample fraction than that for positive extreme value index. This finding implies that this bias reduction method for endpoint is less attractive than that for positive extreme value index. Nevertheless, our simulation study prefers the proposed bias reduction estimators to the biased estimators in Hall [1982. On estimating the endpoint of a distribution. Ann. Statist. 10, 556–568].  相似文献   

2.
Starting with a decision theoretic formulation of simultaneous testing of null hypotheses against two-sided alternatives, a procedure controlling the Bayesian directional false discovery rate (BDFDR) is developed through controlling the posterior directional false discovery rate (PDFDR). This is an alternative to Lewis and Thayer [2004. A loss function related to the FDR for random effects multiple comparison. J. Statist. Plann. Inference 125, 49–58.] with a better control of the BDFDR. Moreover, it is optimum in the sense of being the non-randomized part of the procedure maximizing the posterior expectation of the directional per-comparison power rate given the data, while controlling the PDFDR. A corresponding empirical Bayes method is proposed in the context of one-way random effects model. Simulation study shows that the proposed Bayes and empirical Bayes methods perform much better from a Bayesian perspective than the procedures available in the literature.  相似文献   

3.
Recently Jammalamadaka and Mangalam [2003. Non-parametric estimation for middle censored data. J. Nonparametric Statist. 15, 253–265] introduced a general censoring scheme called the “middle-censoring” scheme in non-parametric set up. In this paper we consider this middle-censoring scheme when the lifetime distribution of the items is exponentially distributed and the censoring mechanism is independent and non-informative. In this set up, we derive the maximum likelihood estimator and study its consistency and asymptotic normality properties. We also derive the Bayes estimate of the exponential parameter under a gamma prior. Since a theoretical construction of the credible interval becomes quite difficult, we propose and implement Gibbs sampling technique to construct the credible intervals. Monte Carlo simulations are performed to evaluate the small sample behavior of the techniques proposed. A real data set is analyzed to illustrate the practical application of the proposed methods.  相似文献   

4.
This paper investigates statistical issues that arise in interlaboratory studies known as Key Comparisons when one has to link several comparisons to or through existing studies. An approach to the analysis of such a data is proposed using Gaussian distributions with heterogeneous variances. We develop conditions for the set of sufficient statistics to be complete and for the uniqueness of uniformly minimum variance unbiased estimators (UMVUE) of the contrast parametric functions. New procedures are derived for estimating these functions with estimates of their uncertainty. These estimates lead to associated confidence intervals for the laboratories (or studies) contrasts. Several examples demonstrate statistical inference for contrasts based on linkage through the pilot laboratories. Monte Carlo simulation results on performance of approximate confidence intervals are also reported.  相似文献   

5.
In a general parametric setup, a multivariate regression model is considered when responses may be missing at random while the explanatory variables and covariates are completely observed. Asymptotic optimality properties of maximum likelihood estimators for such models are linked to the Fisher information matrix for the parameters. It is shown that the information matrix is well defined for the missing-at-random model and that it plays the same role as in the complete-data linear models. Applications of the methodologic developments in hypothesis-testing problems, without any imputation of missing data, are illustrated. Some simulation results comparing the proposed method with Rubin's multiple imputation method are presented.  相似文献   

6.
We study moderate deviations for the maximum likelihood estimation of some inhomogeneous diffusions. The moderate deviation principle with explicit rate functions is obtained. Moreover, we apply our result to the parameter estimation in αα-Wiener bridges.  相似文献   

7.
In this paper, we use a smoothed empirical likelihood method to investigate the difference of quantiles under censorship. An empirical log-likelihood ratio is derived and its asymptotic distribution is shown to be chi-squared. Approximate confidence regions based on this method are constructed. Simulation studies are used to compare the empirical likelihood and the normal approximation method in terms of its coverage accuracy. It is found that the empirical likelihood method provides a much better performance. The research is supported by NSFC (10231030) and RFDP.  相似文献   

8.
Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss.  相似文献   

9.
The mean vector associated with several independent variates from the exponential subclass of Hudson (1978) is estimated under weighted squared error loss. In particular, the formal Bayes and “Stein-like” estimators of the mean vector are given. Conditions are also given under which these estimators dominate any of the “natural estimators”. Our conditions for dominance are motivated by a result of Stein (1981), who treated the Np (θ, I) case with p ≥ 3. Stein showed that formal Bayes estimators dominate the usual estimator if the marginal density of the data is superharmonic. Our present exponential class generalization entails an elliptic differential inequality in some natural variables. Actually, we assume that each component of the data vector has a probability density function which satisfies a certain differential equation. While the densities of Hudson (1978) are particular solutions of this equation, other solutions are not of the exponential class if certain parameters are unknown. Our approach allows for the possibility of extending the parametric Stein-theory to useful nonexponential cases, but the problem of nuisance parameters is not treated here.  相似文献   

10.
Generalized order statistics (gos) were introduced by Kamps [1995. A Concept of Generalized Order Statistics. Teubner, Stuttgart] to unify several models of ordered random variables (rv's), e.g., (ordinary) order statistics (oos), records, sequential order statistics (sos). In a wide subclass of gos that includes oos and sos, the possible limit distribution functions (df's) of the maximum gos are obtained in Nasri-Roudsari [1996. Extreme value theory of generalized order statistics. J. Statist. Plann. Inference 55, 281–297]. In this paper, for this subclass, necessary and sufficient conditions of weak convergence, as well as the form of the possible limit df's of extreme, intermediate and central gos are derived. These results are extended to a wider subclass.  相似文献   

11.
We study the distribution of the adaptive LASSO estimator [Zou, H., 2006. The adaptive LASSO and its oracle properties. J. Amer. Statist. Assoc. 101, 1418–1429] in finite samples as well as in the large-sample limit. The large-sample distributions are derived both for the case where the adaptive LASSO estimator is tuned to perform conservative model selection as well as for the case where the tuning results in consistent model selection. We show that the finite-sample as well as the large-sample distributions are typically highly nonnormal, regardless of the choice of the tuning parameter. The uniform convergence rate is also obtained, and is shown to be slower than n-1/2n-1/2 in case the estimator is tuned to perform consistent model selection. In particular, these results question the statistical relevance of the ‘oracle’ property of the adaptive LASSO estimator established in Zou [2006. The adaptive LASSO and its oracle properties. J. Amer. Statist. Assoc. 101, 1418–1429]. Moreover, we also provide an impossibility result regarding the estimation of the distribution function of the adaptive LASSO estimator. The theoretical results, which are obtained for a regression model with orthogonal design, are complemented by a Monte Carlo study using nonorthogonal regressors.  相似文献   

12.
This paper introduces a median estimator of the logistic regression parameters. It is defined as the classical L1L1-estimator applied to continuous data Z1,…,ZnZ1,,Zn obtained by a statistical smoothing of the original binary logistic regression observations Y1,…,YnY1,,Yn. Consistency and asymptotic normality of this estimator are proved. A method called enhancement is introduced which in some cases increases the efficiency of this estimator. Sensitivity to contaminations and leverage points is studied by simulations and compared in this manner with the sensitivity of some robust estimators previously introduced to the logistic regression. The new estimator appears to be more robust for larger sample sizes and higher levels of contamination.  相似文献   

13.
Non-central chi-squared distribution plays a vital role in statistical testing procedures. Estimation of the non-centrality parameter provides valuable information for the power calculation of the associated test. We are interested in the statistical inference property of the non-centrality parameter estimate based on one observation (usually a summary statistic) from a truncated chi-squared distribution. This work is motivated by the application of the flexible two-stage design in case–control studies, where the sample size needed for the second stage of a two-stage study can be determined adaptively by the results of the first stage. We first study the moment estimate for the truncated distribution and prove its existence, uniqueness, and inadmissibility and convergence properties. We then define a new class of estimates that includes the moment estimate as a special case. Among this class of estimates, we recommend to use one member that outperforms the moment estimate in a wide range of scenarios. We also present two methods for constructing confidence intervals. Simulation studies are conducted to evaluate the performance of the proposed point and interval estimates.  相似文献   

14.
A unified approach of parameter-estimation and goodness-of-fit testing is proposed. The new procedures may be applied to arbitrary laws with continuous distribution function. Specifically, both the method of estimation and the goodness-of-fit test are based on the idea of optimally transforming the original data to the uniform distribution, the criterion of optimality being an L2-type distance between the empirical characteristic function of the transformed data, and the characteristic function of the uniform (0,1)(0,1) distribution. Theoretical properties of the new estimators and tests are studied and some connections with classical statistics, moment-based procedures and non-parametric methods are investigated. Comparison with standard procedures via Monte Carlo is also included, along with a real-data application.  相似文献   

15.
Let TM be an M-estimator (maximum likelihood type estimator) and TR be an R-estimator (Hodges-Lehmann's estimator) of the shift parameter Δ in the two-sample location model. The asymptotic representation of √N(TM-TR) up to a term of the order Op(N-14) is derived which is valid if the functions Ψ and ? generating TM and TR, respectively, decompose into an absolutely continuous and a step-function components; the order Op(N-14) cannot be improved unless the discontinuous components vanish. As a consequence, the conditions under which √N(TM-TR)=Op(N-14) are obtained. The main tool for obtaining the results is the second order asymptotic linearity of the pertaining linear rank statistics which is proved here under the assumption that the score-generating function ? has some jump-discontinuities.  相似文献   

16.
In this paper, we consider the prediction problem in multiple linear regression model in which the number of predictor variables, p, is extremely large compared to the number of available observations, n  . The least-squares predictor based on a generalized inverse is not efficient. We propose six empirical Bayes estimators of the regression parameters. Three of them are shown to have uniformly lower prediction error than the least-squares predictors when the vector of regressor variables are assumed to be random with mean vector zero and the covariance matrix (1/n)XtX(1/n)XtX where Xt=(x1,…,xn)Xt=(x1,,xn) is the p×np×n matrix of observations on the regressor vector centered from their sample means. For other estimators, we use simulation to show its superiority over the least-squares predictor.  相似文献   

17.
A survey of research by Emanuel Parzen on how quantile functions provide elegant and applicable formulas that unify many statistical methods, especially frequentist and Bayesian confidence intervals and prediction distributions. Section 0: In honor of Ted Anderson's 90th birthday; Section 1: Quantile functions, endpoints of prediction intervals; Section 2: Extreme value limit distributions; Sections 3, 4: Confidence and prediction endpoint function: Uniform(0,θ)(0,θ), exponential; Sections: 5, 6: Confidence quantile and Bayesian inference normal parameters μμ, σσ; Section 7: Two independent samples confidence quantiles; Section 8: Confidence quantiles for proportions, Wilson's formula. We propose ways that Bayesians and frequentists can be friends!  相似文献   

18.
Lu Lin 《Statistical Papers》2004,45(4):529-544
The quasi-score function, as defined by Wedderburn (1974) and McCullagh (1983) and so on, is a linear function of observations. The generalized quasi-score function introduced in this paper is a linear function of some unbiased basis functions, where the unbiased basis functions may be some linear functions of the observations or not, and can be easily constructed by the meaning of the parameters such as mean and median and so on. The generalized quasi-likelihood estimate obtained by such a generalized quasi-score function is consistent and has an asymptotically normal distribution. As a result, the optimum generalized quasi-score is obtained and a method to construct the optimum unbiased basis function is introduced. In order to construct the potential function, a conservative generalized estimating function is defined. By conservative, a potential function for the projected score has many properties of a log-likelihood function. Finally, some examples are given to illustrate the theoretical results. This paper is supported by NNSF project (10371059) of China and Youth Teacher Foundation of Nankai University.  相似文献   

19.
We discuss the general form of a first-order correction to the maximum likelihood estimator which is expressed in terms of the gradient of a function, which could for example be the logarithm of a prior density function. In terms of Kullback–Leibler divergence, the correction gives an asymptotic improvement over maximum likelihood under rather general conditions. The theory is illustrated for Bayes estimators with conjugate priors. The optimal choice of hyper-parameter to improve the maximum likelihood estimator is discussed. The results based on Kullback–Leibler risk are extended to a wide class of risk functions.  相似文献   

20.
Ranked set sampling (RSS) was first proposed by McIntyre [1952. A method for unbiased selective sampling, using ranked sets. Australian J. Agricultural Res. 3, 385–390] as an effective way to estimate the unknown population mean. Chuiv and Sinha [1998. On some aspects of ranked set sampling in parametric estimation. In: Balakrishnan, N., Rao, C.R. (Eds.), Handbook of Statistics, vol. 17. Elsevier, Amsterdam, pp. 337–377] and Chen et al. [2004. Ranked Set Sampling—Theory and Application. Lecture Notes in Statistics, vol. 176. Springer, New York] have provided excellent surveys of RSS and various inferential results based on RSS. In this paper, we use the idea of order statistics from independent and non-identically distributed (INID) random variables to propose ordered ranked set sampling (ORSS) and then develop optimal linear inference based on ORSS. We determine the best linear unbiased estimators based on ORSS (BLUE-ORSS) and show that they are more efficient than BLUE-RSS for the two-parameter exponential, normal and logistic distributions. Although this is not the case for the one-parameter exponential distribution, the relative efficiency of the BLUE-ORSS (to BLUE-RSS) is very close to 1. Furthermore, we compare both BLUE-ORSS and BLUE-RSS with the BLUE based on order statistics from a simple random sample (BLUE-OS). We show that BLUE-ORSS is uniformly better than BLUE-OS, while BLUE-RSS is not as efficient as BLUE-OS for small sample sizes (n<5n<5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号