首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose two kernel density estimators based on a bias reduction technique. We study the properties of these estimators and compare them with Parzen–Rosenblatt's density estimator and Mokkadem, A., Pelletier, M., and Slaoui, Y. (2009, ‘The stochastic approximation method for the estimation of a multivariate probability density’, J. Statist. Plann. Inference, 139, 2459–2478) is density estimators. It turns out that, with an adequate choice of the parameters of the two proposed estimators, the rate of convergence of two estimators will be faster than the two classical estimators and the asymptotic MISE (Mean Integrated Squared Error) will be smaller than the two classical estimators. We corroborate these theoretical results through simulations.  相似文献   

2.
Abstract

In this article we propose an automatic selection of the bandwidth of the recursive kernel density estimators for spatial data defined by the stochastic approximation algorithm. We showed that, using the selected bandwidth and the stepsize which minimize the MWISE (Mean Weighted Integrated Squared Error), the recursive estimator will be quite similar to the nonrecursive one in terms of estimation error and much better in terms of computational costs. In addition, we obtain the central limit theorem for the nonparametric recursive density estimator under some mild conditions.  相似文献   

3.
There is a tendency for the true variability of feasible GLS estimators to be understated by asymptotic standard errors. For estimation of SUR models, this tendency becomes more severe in large equation systems when estimation of the error covariance matrix, C, becomes problematic. We explore a number of potential solutions involving the use of improved estimators for the disturbance covariance matrix and bootstrapping. In particular, Ullah and Racine (1992) have recently introduced a new class of estimators for SUR models that use nonparametric kernel density estimation techniques. The proposed estimators have the same structure as the feasible GLS estimator of Zellner (1962) differing only in the choice of estimator for C. Ullah and Racine (1992) prove that their nonparametric density estimator of C can be expressed as Zellner's original estimator plus a positive definite matrix that depends on the smoothing parameter chosen for the density estimation. It is this structure of the estimator that most interests us as it has the potential to be especially useful in large equation systems.

Atkinson and Wilson (1992) investigated the bias in the conventional and bootstrap estimators of coefficient standard errors in SUR models. They demonstrated that under certain conditions the former were superior, but they caution that neither estimator uniformly dominated and hence bootstrapping provides little improvement in the estimation of standard errors for the regression coefficients. Rilstone and Veal1 (1996) argue that an important qualification needs to be made to this somewhat negative conclusion. They demonstrated that bootstrapping can result in improvements in inferences if the procedures are applied to the t-ratios rather than to the standard errors. These issues are explored for the case of large equation systems and when bootstrapping is combined with improved covariance estimation.  相似文献   

4.
In this paper we propose a smooth nonparametric estimation for the conditional probability density function based on a Bernstein polynomial representation. Our estimator can be written as a finite mixture of beta densities with data-driven weights. Using the Bernstein estimator of the conditional density function, we derive new estimators for the distribution function and conditional mean. We establish the asymptotic properties of the proposed estimators, by proving their asymptotic normality and by providing their asymptotic bias and variance. Simulation results suggest that the proposed estimators can outperform the Nadaraya–Watson estimator and, in some specific setups, the local linear kernel estimators. Finally, we use our estimators for modeling the income in Italy, conditional on year from 1951 to 1998, and have another look at the well known Old Faithful Geyser data.  相似文献   

5.
This paper deals with recursive M-estimators of a location parameter θ in stationary processes when scale is regarded as a nuisance parameter. For the nonrecursive M-estimators, the median absolute deviation is a useful estimator of scale. Two recursive variants of the median absolute deviation are proposed and the performance of the resulting recursive estimators is examined in a numerical study.  相似文献   

6.
Methods for obtaining kernel-based density estimators with lower bias and mean integrated squared error than an estimator based on a standard Normal kernel function are described and discussed. Three main approaches are considered which are: firstly by using 'optimal' polynomial kernels as described, for example, by Gasser er a1 (1985); secondly by employing generalised jackknifing as proposed by Jones nd Foster (1993) and thirdly by subtracting an estimator of the principal asymptotic bias term from the original estimator. The emphasis in this initial discussion is on their asymptotic properties. The finite sample performance of those that have the best asymptotic properties are compared with two adaptive estimators, as well as the fixed Normal kernel estimator, in a simulation study.  相似文献   

7.
Although the Bezier curve is very popular in the area of computational graphics it has rarely been used by statisticians. In this paper we develop methods and techniques for use of the Bezier curve in estimation of density and regression function. Also, asymptotic mean integrated square error for both estimators are derived. Comparisons with kernel estimator are conducted using simulation.  相似文献   

8.
Boundary and Bias Correction in Kernel Hazard Estimation   总被引:1,自引:0,他引:1  
A new class of local linear hazard estimators based on weighted least square kernel estimation is considered. The class includes the kernel hazard estimator of Ramlau-Hansen (1983), which has the same boundary correction property as the local linear regression estimator (see Fan & Gijbels, 1996). It is shown that all the local linear estimators in the class have the same pointwise asymptotic properties. We derive the multiplicative bias correction of the local linear estimator. In addition we propose a new bias correction technique based on bootstrap estimation of additive bias. This latter method has excellent theoretical properties. Based on an extensive simulation study where we compare the performance of competing estimators, we also recommend the use of the additive bias correction in applied work.  相似文献   

9.
Yu-Ye Zou 《Statistics》2017,51(6):1214-1237
In this paper, we define the nonlinear wavelet estimator of density for the right censoring model with the censoring indicator missing at random (MAR), and develop its asymptotic expression for mean integrated squared error (MISE). Unlike for kernel estimator, the MISE expression of the estimator is not affected by the presence of discontinuities in the curve. Meanwhile, asymptotic normality of the estimator is established. The proposed estimator can reduce to the estimator defined by Li [Non-linear wavelet-based density estimators under random censorship. J Statist Plann Inference. 2003;117(1):35–58] when the censoring indicator MAR does not occur and a bandwidth in non-parametric estimation is close to zero. Also, we define another two nonlinear wavelet estimators of the density. A simulation is done to show the performance of the three proposed estimators.  相似文献   

10.
We develop and study in the framework of Pareto-type distributions a class of nonparametric kernel estimators for the conditional second order tail parameter. The estimators are obtained by local estimation of the conditional second order parameter using a moving window approach. Asymptotic normality of the proposed class of kernel estimators is proven under some suitable conditions on the kernel function and the conditional tail quantile function. The nonparametric estimators for the second order parameter are subsequently used to obtain a class of bias-corrected kernel estimators for the conditional tail index. In particular it is shown how for a given kernel function one obtains a bias-corrected kernel function, and that replacing the second order parameter in the latter with a consistent estimator does not change the limiting distribution of the bias-corrected estimator for the conditional tail index. The finite sample behavior of some specific estimators is illustrated with a simulation experiment. The developed methodology is also illustrated on fire insurance claim data.  相似文献   

11.
In this article, we first propose the classical multivariate generalized Birnbaum–Saunders kernel estimator for probability density function estimation in the context of multivariate non negative data. Then, we apply two multiplicative bias correction (MBC) techniques for multivariate kernel density estimator. Some properties (bias, variance, and mean integrated squared error) of the corresponding estimators are also investigated. Finally, the performances of the classical and MBC estimators based on family of generalized Birnbaum–Saunders kernels are illustrated by a simulation study.  相似文献   

12.
We propose kernel density estimators based on prebinned data. We use generalized binning schemes based on the quantiles points of a certain auxiliary distribution function. Therein the uniform distribution corresponds to usual binning. The statistical accuracy of the resulting kernel estimators is studied, i.e. we derive mean squared error results for the closeness of these estimators to both the true function and the kernel estimator based on the original data set. Our results show the influence of the choice of the auxiliary density on the binned kernel estimators and they reveal that non-uniform binning can be worthwhile.  相似文献   

13.
We propose a modification to the regular kernel density estimation method that use asymmetric kernels to circumvent the spill over problem for densities with positive support. First a pivoting method is introduced for placement of the data relative to the kernel function. This yields a strongly consistent density estimator that integrates to one for each fixed bandwidth in contrast to most density estimators based on asymmetric kernels proposed in the literature. Then a data-driven Bayesian local bandwidth selection method is presented and lognormal, gamma, Weibull and inverse Gaussian kernels are discussed as useful special cases. Simulation results and a real-data example illustrate the advantages of the new methodology.  相似文献   

14.
In this paper, we develop a nonparametrie recursive estimator for the vitality and mena residual life function, based on kernel density estimators under mixing dependence conditions. The consistency and asymptotic normality of the estimator are established, under suitable regularity conditions. It is also shown that the Integrated Mean Squared Error converges to zero. The paper is concluyed with some simulation results.  相似文献   

15.
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.  相似文献   

16.
We investigate the asymptotic behaviour of binned kernel density estimators for dependent and locally non-stationary random fields converging to stationary random fields. We focus on the study of the bias and the asymptotic normality of the estimators. A simulation experiment conducted shows that both the kernel density estimator and the binned kernel density estimator have the same behavior and both estimate accurately the true density when the number of fields increases. We apply our results to the 2002 incidence rates of tuberculosis in the departments of France.  相似文献   

17.
Abstract. Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern h 4 bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k -NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators.  相似文献   

18.
Several asymptotically equivalent quantile estimators recently have been proposed as alternative to the conventional sample quantile. A variety of weight functions have been obtained either by subsampling considerations or by a kernel approach, analogous to density estimation techniques. Focusing on the former approach, a unified treatment of quantile estimators derived by subsampling is developed. Closely related to the generalized Harrell-Davis (HD) and Kaigh-Lachenbruch (KL) estimators, a new statistic performed well in Monte Carlo effiency comparisons presented here. Moreover, the new estimator shares certain desirable computational and finite-sample theeoretical properties with the KL estimator to yield convenient components representations for tests of uniformity and goodness-of-fit criteria. Similar analytic treatment for the HD statistics and kernel quantile estimators, however, is precluded by intractable eigenvalue problems.  相似文献   

19.
Kernel smoothing methods are widely used in many research areas in statistics. However, kernel estimators suffer from boundary effects when the support of the function to be estimated has finite endpoints. Boundary effects seriously affect the overall performance of the estimator. In this article, we propose a new method of boundary correction for univariate kernel density estimation. Our technique is based on a data transformation that depends on the point of estimation. The proposed method possesses desirable properties such as local adaptivity and non-negativity. Furthermore, unlike many other transformation methods available, the proposed estimator is easy to implement. In a Monte Carlo study, the accuracy of the proposed estimator is numerically analyzed and compared with the existing methods of boundary correction. We find that it performs well for most shapes of densities. The theory behind the new methodology, along with the bias and variance of the proposed estimator, are presented. Results of a data analysis are also given.  相似文献   

20.
This paper investigates nonparametric estimation of density on [0, 1]. The kernel estimator of density on [0, 1] has been found to be sensitive to both bandwidth and kernel. This paper proposes a unified Bayesian framework for choosing both the bandwidth and kernel function. In a simulation study, the Bayesian bandwidth estimator performed better than others, and kernel estimators were sensitive to the choice of the kernel and the shapes of the population densities on [0, 1]. The simulation and empirical results demonstrate that the methods proposed in this paper can improve the way the probability densities on [0, 1] are presently estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号