首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cordeiro and Andrade [Transformed generalized linear models. J Stat Plan Inference. 2009;139:2970–2987] incorporated the idea of transforming the response variable to the generalized autoregressive moving average (GARMA) model, introduced by Benjamin et al. [Generalized autoregressive moving average models. J Am Stat Assoc. 2003;98:214–223], thus developing the transformed generalized autoregressive moving average (TGARMA) model. The goal of this article is to develop the TGARMA model for symmetric continuous conditional distributions with a possible nonlinear structure for the mean that enables the fitting of a wide range of models to several time series data types. We derive an iterative process for estimating the parameters of the new model by maximum likelihood and obtain a simple formula to estimate the parameter that defines the transformation of the response variable. Furthermore, we determine the moments of the original dependent variable which generalize previous published results. We illustrate the theory by means of real data sets and evaluate the results developed through simulation studies.  相似文献   

2.
It is of scientific interest to study the application of COM-Poisson model to the case of longitudinal response data, the analysis of which is quite challenging due to the fact that longitudinal responses of a subject are correlated and the correlation pattern is usually unknown. In this article, we extend the COM-Poisson GLM to the generalized linear longitudinal model. We also develop a joint generalized quasi-likelihood estimating equation approach based on a stationary autocorrelation structure for the repeated count data. We further compare the performance of this estimation method with that of Generalized Method of Moments through a simulation study.  相似文献   

3.
In this paper, we extend the modified lasso of Wang et al. (2007) to the linear regression model with autoregressive moving average (ARMA) errors. Such an extension is far from trivial because new devices need to be called for to establish the asymptotics due to the existence of the moving average component. A shrinkage procedure is proposed to simultaneously estimate the parameters and select the informative variables in the regression, autoregressive, and moving average components. We show that the resulting estimator is consistent in both parameter estimation and variable selection, and enjoys the oracle properties. To overcome the complexity in numerical computation caused by the existence of the moving average component, we propose a procedure based on a least squares approximation to implement estimation. The ordinary least squares formulation with the use of the modified lasso makes the computation very efficient. Simulation studies are conducted to evaluate the finite sample performance of the procedure. An empirical example of ground-level ozone is also provided.  相似文献   

4.
In this paper, we reconsider the mixture vector autoregressive model, which was proposed in the literature for modelling non‐linear time series. We complete and extend the stationarity conditions, derive a matrix formula in closed form for the autocovariance function of the process and prove a result on stable vector autoregressive moving‐average representations of mixture vector autoregressive models. For these results, we apply techniques related to a Markovian representation of vector autoregressive moving‐average processes. Furthermore, we analyse maximum likelihood estimation of model parameters by using the expectation–maximization algorithm and propose a new iterative algorithm for getting the maximum likelihood estimates. Finally, we study the model selection problem and testing procedures. Several examples, simulation experiments and an empirical application based on monthly financial returns illustrate the proposed procedures.  相似文献   

5.
Spatial modeling is widely used in environmental sciences, biology, and epidemiology. Generalized linear mixed models are employed to account for spatial variations of point-referenced data called spatial generalized linear mixed models (SGLMMs). Frequentist analysis of these type of data is computationally difficult. On the other hand, the advent of the Markov chain Monte Carlo algorithm has made the Bayesian analysis of SGLMM computationally convenient. Recent introduction of the method of data cloning, which leads to maximum likelihood estimate, has made frequentist analysis of mixed models also equally computationally convenient. Recently, the data cloning was employed to estimate model parameters in SGLMMs, however, the prediction of spatial random effects and kriging are also very important. In this article, we propose a frequentist approach based on data cloning to predict (and provide prediction intervals) spatial random effects and kriging. We illustrate this approach using a real dataset and also by a simulation study.  相似文献   

6.
ABSTRACT

In this article, we study the estimation for a class of semiparametric mixtures of generalized linear models where mixing proportions depend on a covariate non parametrically. We investigate a backfitting estimation procedure and show the asymptotic normality of the proposed estimators under mild conditions. We conduct simulation to show the good performance of our methodology and give a real data analysis as an illustration.  相似文献   

7.
In this paper we give an asymptotic formula of order n ?1/2, where n is the sample size, for the skewness of the distribution of the maximum likelihood estimates of the linear parameters in generalized linear models. The formula is given in matrix notation and is very suitable for computer implementation. Several special cases are discussed. We also give asymptotic formulae for the skewness of the distribution of the maximum likelihood estimates of the dispersion and precision parameters.  相似文献   

8.
For a discrete time, second-order stationary process the Levinson–Durbin recursion is used to determine best fitting one-step-ahead linear autoregressive predictors of successively increasing order, best in the sense of minimizing the mean square error. Whittle [1963. On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix. Biometrika 50, 129–134] generalized the recursion to the case of vector autoregressive processes. The recursion defines what is termed a Levinson–Durbin–Whittle sequence, and a generalized Levinson–Durbin–Whittle sequence is also defined. Generalized Levinson–Durbin–Whittle sequences are shown to satisfy summation formulas which generalize summation formulas satisfied by binomial coefficients. The formulas can be expressed in terms of the partial correlation sequence, and they assume simple forms for time-reversible processes. The results extend comparable formulas obtained in Shaman [2007. Generalized Levinson–Durbin sequences, binomial coefficients and autoregressive estimation. Working paper] for univariate processes.  相似文献   

9.
10.
We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. These procedures extend the empirical likelihood (EL) method and share common features with generalized empirical likelihood approach. We treat the problems of existence and characterization of the divergence projections of probability distributions on sets of signed finite measures. We give a precise characterization of duality, for the proposed class of estimates and test statistics, which is used to derive their limiting distributions (including the EL estimate and the EL ratio statistic) both under the null hypotheses and under alternatives or misspecification. An approximation to the power function is deduced as well as the sample size which ensures a desired power for a given alternative.  相似文献   

11.
Autoregressive models with infinite variance are of great importance in modeling heavy-tailed time series and have been well studied. In this paper, we propose a penalized method to conduct model selection for autoregressive models with innovations having Pareto-like distributions with index α∈(0,2)α(0,2). By combining the least absolute deviation loss function and the adaptive lasso penalty, the proposed method is able to consistently identify the true model and at the same time produce efficient estimators with a convergence rate of n−1/αn1/α. In addition, our approach provides a unified way to conduct variable selection for autoregressive models with finite or infinite variance. A simulation study and a real data analysis are conducted to illustrate the effectiveness of our method.  相似文献   

12.
Real time series can present anomalies, like non-additivity, non-normality, and heteroscedasticity, which makes using GARMA models impossible. Our article introduces a new class of models called Transformed Generalized Autoregressive Moving Average (TGARMA) models that allow using transformations to guarantee the GARMA assumptions. We present an extensive simulation study of the influence of the transformation on GARMA estimation. We also propose using bootstrap methods to get more information about the distribution of the transformation parameter. We apply the methodology to data related to annual Swedish fertility rates.  相似文献   

13.
Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model‐based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model‐based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, we propose a new class of semiparametric instrumental variable models with partially varying coefficients, in which the structural function has a partially linear form and the impact of endogenous structural variables can vary over different levels of some exogenous variables. We propose a three-step estimation procedure to estimate both functional and constant coefficients. The consistency and asymptotic normality of these proposed estimators are established. Moreover, a generalized F-test is developed to test whether the functional coefficients are of particular parametric forms with some underlying economic intuitions, and furthermore, the limiting distribution of the proposed generalized F-test statistic under the null hypothesis is established. Finally, we illustrate the finite sample performance of our approach with simulations and two real data examples in economics.  相似文献   

15.
In practice, it is not uncommon to encounter the situation that a discrete response is related to both a functional random variable and multiple real-value random variables whose impact on the response is nonlinear. In this paper, we consider the generalized partial functional linear additive models (GPFLAM) and present the estimation procedure. In GPFLAM, the nonparametric functions are approximated by polynomial splines and the infinite slope function is estimated based on the principal component basis function approximations. We obtain the estimator by maximizing the quasi-likelihood function. We investigate the finite sample properties of the estimation procedure via Monte Carlo simulation studies and illustrate our proposed model by a real data analysis.  相似文献   

16.
We consider a linear regression with the error term that obeys an autoregressive model of infinite order and estimate parameters of the models. The parameters of the autoregressive model should be estimated based on estimated residuals obtained by means of the method of ordinary least squares, because the errors are unobservable. The consistency of the coefficients, variance and spectral density of the model obeyed by the error term is shown. Further, we estimate the coefficients of the linear regression by means of the method of estimated generalized least squares. We also show the consistency of the estimator.

  相似文献   

17.
Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We describe the generalized maximum Tsallis entropy and for q = 2 we call that GMET2 estimator. We apply the GMET2 estimator for estimating the linear regression model Y = Xβ + e where the design matrix X is subject to severe multicollinearity. We compared the GMET2, generalized maximum entropy (GME), ordinary least-square (OLS), and inequality restricted least-square (IRLS) estimators on the analyzed dataset on Portland cement.  相似文献   

18.
Monte Carlo simulations were done to estimate the means and standard deviations of the characteristic roots of a Wishart matrix which can be used in computing tests of hypotheses concerning multiplicative terms in balanced linear-bilinear (multiplicative) models for an m × n table of data. In this report we extend the previous results (Mandel, 1971; Cornelius, 1980) to r ≤ 199, c ≤ 149 or r ≤ 149, c ≤ 199, where r and c are row and column degrees of freedom, respectively, of the two-way array of residuals (with total degrees of freedom rc) after fitting the linear effects. For 187 combinations of r and c at intervals over this domain, we used 5000 simulations to estimate expectations and standard deviations of the Wishart roots. Using weighted linear regression variable selection techniques, symmetric functions of r and c were obtained for approximating the simulated means and standard deviations. Use of these approximating functions will avoid the need for reference to tables for input to computer programs which require these values for tests of significance of sequentially fitted terms in the analyses of balanced linear-bilinear models.  相似文献   

19.
Generalized additive mixed models are proposed for overdispersed and correlated data, which arise frequently in studies involving clustered, hierarchical and spatial designs. This class of models allows flexible functional dependence of an outcome variable on covariates by using nonparametric regression, while accounting for correlation between observations by using random effects. We estimate nonparametric functions by using smoothing splines and jointly estimate smoothing parameters and variance components by using marginal quasi-likelihood. Because numerical integration is often required by maximizing the objective functions, double penalized quasi-likelihood is proposed to make approximate inference. Frequentist and Bayesian inferences are compared. A key feature of the method proposed is that it allows us to make systematic inference on all model components within a unified parametric mixed model framework and can be easily implemented by fitting a working generalized linear mixed model by using existing statistical software. A bias correction procedure is also proposed to improve the performance of double penalized quasi-likelihood for sparse data. We illustrate the method with an application to infectious disease data and we evaluate its performance through simulation.  相似文献   

20.
Generalized linear mixed models (GLMMs) are widely used to analyse non-normal response data with extra-variation, but non-robust estimators are still routinely used. We propose robust methods for maximum quasi-likelihood and residual maximum quasi-likelihood estimation to limit the influence of outlying observations in GLMMs. The estimation procedure parallels the development of robust estimation methods in linear mixed models, but with adjustments in the dependent variable and the variance component. The methods proposed are applied to three data sets and a comparison is made with the nonparametric maximum likelihood approach. When applied to a set of epileptic seizure data, the methods proposed have the desired effect of limiting the influence of outlying observations on the parameter estimates. Simulation shows that one of the residual maximum quasi-likelihood proposals has a smaller bias than those of the other estimation methods. We further discuss the equivalence of two GLMM formulations when the response variable follows an exponential family. Their extensions to robust GLMMs and their comparative advantages in modelling are described. Some possible modifications of the robust GLMM estimation methods are given to provide further flexibility for applying the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号