共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Luca Greco 《统计学通讯:模拟与计算》2017,46(10):7777-7789
This contribution deals with the statistical problem of evaluating the stress–strength reliability parameter R = P(X < Y), when both stress and strength data are prone to contamination. Standard likelihood inference can be badly affected by mild data inadequacies, that often occur in the form of several outliers. Then, robust tools are recommended. Here, inference relies on the weighted likelihood methodology. This approach has the advantage to lead to robust estimators, tests, and confidence intervals that share the main asymptotic properties of their classical counterparts. The accuracy of the proposed methodology is illustrated both by numerical studies and real-data applications. 相似文献
3.
In this paper, we introduce the empirical likelihood (EL) method to longitudinal studies. By considering the dependence within subjects in the auxiliary random vectors, we propose a new weighted empirical likelihood (WEL) inference for generalized linear models with longitudinal data. We show that the weighted empirical likelihood ratio always follows an asymptotically standard chi-squared distribution no matter which working weight matrix that we have chosen, but a well chosen working weight matrix can improve the efficiency of statistical inference. Simulations are conducted to demonstrate the accuracy and efficiency of our proposed WEL method, and a real data set is used to illustrate the proposed method. 相似文献
4.
5.
We provide Monte Carlo evidence on the finite-sample behavior of the conditional empirical likelihood (CEL) estimator of Kitamura, Tripathi, and Ahn and the conditional Euclidean empirical likelihood (CEEL) estimator of Antoine, Bonnal, and Renault in the context of a heteroscedastic linear model with an endogenous regressor. We compare these estimators with three heteroscedasticity-consistent instrument-based estimators and the Donald, Imbens, and Newey estimator in terms of various performance measures. Our results suggest that the CEL and CEEL with fixed bandwidths may suffer from the no-moment problem, similarly to the unconditional generalized empirical likelihood estimators studied by Guggenberger. We also study the CEL and CEEL estimators with automatic bandwidths selected through cross-validation. We do not find evidence that these suffer from the no-moment problem. When the instruments are weak, we find CEL and CEEL to have finite-sample properties—in terms of mean squared error and coverage probability of confidence intervals—poorer than the heteroscedasticity-consistent Fuller (HFUL) estimator. In the strong instruments case, the CEL and CEEL estimators with automatic bandwidths tend to outperform HFUL in terms of mean squared error, while the reverse holds in terms of the coverage probability, although the differences in numerical performance are rather small. 相似文献
6.
《Journal of the Korean Statistical Society》2014,43(2):201-214
A functional-form empirical likelihood method is proposed as an alternative method to the empirical likelihood method. The proposed method has the same asymptotic properties as the empirical likelihood method but has more flexibility in choosing the weight construction. Because it enjoys the likelihood-based interpretation, the profile likelihood ratio test can easily be constructed with a chi-square limiting distribution. Some computational details are also discussed, and results from finite-sample simulation studies are presented. 相似文献
7.
8.
ABSTRACTThis article develops an adjusted empirical likelihood (EL) method for the additive hazards model. The adjusted EL ratio is shown to have a central chi-squared limiting distribution under the null hypothesis. We also evaluate its asymptotic distribution as a non central chi-squared distribution under the local alternatives of order n? 1/2, deriving the expression for the asymptotic power function. Simulation studies and a real example are conducted to evaluate the finite sample performance of the proposed method. Compared with the normal approximation-based method, the proposed method tends to have more larger empirical power and smaller confidence regions with comparable coverage probabilities. 相似文献
9.
Ruiqin Tian 《Statistics》2017,51(5):988-1005
In this paper, empirical likelihood inference for longitudinal data within the framework of partial linear regression models are investigated. The proposed procedures take into consideration the correlation within groups without involving direct estimation of nuisance parameters in the correlation matrix. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence intervals. A nonparametric version of Wilk's theorem for the limiting distribution of the empirical likelihood ratio is derived. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. The finite sample behaviour of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial data set. 相似文献
10.
Robert Graham Clark 《Australian & New Zealand Journal of Statistics》2020,62(1):49-70
In outcome‐dependent sampling, the continuous or binary outcome variable in a regression model is available in advance to guide selection of a sample on which explanatory variables are then measured. Selection probabilities may either be a smooth function of the outcome variable or be based on a stratification of the outcome. In many cases, only data from the final sample is accessible to the analyst. A maximum likelihood approach for this data configuration is developed here for the first time. The likelihood for fully general outcome‐dependent designs is stated, then the special case of Poisson sampling is examined in more detail. The maximum likelihood estimator differs from the well‐known maximum sample likelihood estimator, and an information bound result shows that the former is asymptotically more efficient. A simulation study suggests that the efficiency difference is generally small. Maximum sample likelihood estimation is therefore recommended in practice when only sample data is available. Some new smooth sample designs show considerable promise. 相似文献
11.
In the dynamic financial market, the change of financial asset prices is always described as a certain random events which result in abrupt changes. The random time when the event occurs is called a change point. As the event happens, in order to mitigate property damage the government should increase the macro-control ability. As a result, we need to find a valid statistical model for change point problem to solve it effectively. This paper proposes a semiparametric model for detecting the change points. According to the research of empirical studies and hypothesis testing we acquire the maximum likelihood estimators of change points. We use the loglikelihood ratio to test the multiple change points. We obtain some asymptotic results. The estimated change point is more efficient than the non parametric one through simulation experiments. Real data application illustrates the usage of the model. 相似文献
12.
In this paper, we propose an empirical likelihood-based weighted estimator of regression parameter in quantile regression model with non ignorable missing covariates. The proposed estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness on the fully observed variables is correctly specified. The efficiency gain of the proposed estimator over the complete-case-analysis estimator is quantified theoretically and illustrated via simulation and a real data application. 相似文献
13.
A standard assumption in regression analysis is homogeneity of the error variance. Violation of this assumption can have adverse consequences for the efficiency of estimators. In this paper, we propose an empirical likelihood based diagnostic technique for heteroscedasticity in the partially linear errors-in-variables models. Under mild conditions, a nonparametric version of Wilk's theorem is derived. Simulation results reveal that our test performs well in both size and power. 相似文献
14.
The authors develop empirical likelihood (EL) based methods of inference for a common mean using data from several independent but nonhomogeneous populations. For point estimation, they propose a maximum empirical likelihood (MEL) estimator and show that it is n‐consistent and asymptotically optimal. For confidence intervals, they consider two EL based methods and show that both intervals have approximately correct coverage probabilities under large samples. Finite‐sample performances of the MEL estimator and the EL based confidence intervals are evaluated through a simulation study. The results indicate that overall the MEL estimator and the weighted EL confidence interval are superior alternatives to the existing methods. 相似文献
15.
Biao Zhang 《Statistics》2016,50(5):1173-1194
Missing covariate data occurs often in regression analysis. We study methods for estimating the regression coefficients in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866] on regression analyses with missing covariates, in which they pioneered the use of two working models, the working propensity score model and the working conditional score model. A recent approach to missing covariate data analysis is the empirical likelihood method of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503], which effectively combines unbiased estimating equations. In this paper, we consider an alternative likelihood approach based on the full likelihood of the observed data. This full likelihood-based method enables us to generate estimators for the vector of the regression coefficients that are (a) asymptotically equivalent to those of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the working propensity score model is correctly specified, and (b) doubly robust, like the augmented inverse probability weighting (AIPW) estimators of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Am Statist Assoc. 1994;89:846–866]. Thus, the proposed full likelihood-based estimators improve on the efficiency of the AIPW estimators when the working propensity score model is correct but the working conditional score model is possibly incorrect, and also improve on the empirical likelihood estimators of Qin, Zhang and Leung [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the reverse is true, that is, the working conditional score model is correct but the working propensity score model is possibly incorrect. In addition, we consider a regression method for estimation of the regression coefficients when the working conditional score model is correctly specified; the asymptotic variance of the resulting estimator is no greater than the semiparametric variance bound characterized by the theory of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866]. Finally, we compare the finite-sample performance of various estimators in a simulation study. 相似文献
16.
Tianqing Liu 《Statistics》2016,50(1):89-113
This paper proposes an empirical likelihood-based weighted (ELW) quantile regression approach for estimating the conditional quantiles when some covariates are missing at random. The proposed ELW estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness is correctly specified. The limiting covariance matrix of the ELW estimator can be estimated by a resampling technique, which does not involve nonparametric density estimation or numerical derivatives. Simulation results show that the ELW method works remarkably well in finite samples. A real data example is used to illustrate the proposed ELW method. 相似文献
17.
《Journal of Statistical Computation and Simulation》2012,82(4):431-443
We consider the issue of performing accurate small-sample likelihood-based inference in beta regression models, which are useful for modelling continuous proportions that are affected by independent variables. We derive small-sample adjustments to the likelihood ratio statistic in this class of models. The adjusted statistics can be easily implemented from standard statistical software. We present Monte Carlo simulations showing that inference based on the adjusted statistics we propose is much more reliable than that based on the usual likelihood ratio statistic. A real data example is presented. 相似文献
18.
Lei Wang 《Journal of nonparametric statistics》2017,29(3):594-614
To make efficient inference for mean of a response variable when the data are missing at random and the dimension of covariate is not low, we construct three bias-corrected empirical likelihood (EL) methods in conjunction with dimension-reduced kernel estimation of propensity or/and conditional mean response function. Consistency and asymptotic normality of the maximum dimension-reduced EL estimators are established. We further study the asymptotic properties of the resulting dimension-reduced EL ratio functions and the corresponding EL confidence intervals for the response mean are constructed. The finite-sample performance of the proposed estimators is studied through simulation, and an application to HIV-CD4 data set is also presented. 相似文献
19.
In this paper, we investigate empirical likelihood (EL) inferences via weighted composite quantile regression for non linear models. Under regularity conditions, we establish that the proposed empirical log-likelihood ratio is asymptotically chi-squared, and then the confidence intervals for the regression coefficients are constructed. The proposed method avoids estimating the unknown error density function involved in the asymptotic covariance matrix of the estimators. Simulations suggest that the proposed EL procedure is more efficient and robust, and a real data analysis is used to illustrate the performance. 相似文献
20.
In this paper, we propose an empirical likelihood based diagnostic technique for heteroscedasticity in the semiparametric varying-coefficient partially linear errors-in-variables models. Under mild conditions, a nonparametric version of Wilk’s theorem is derived. Simulation results reveal that our test performs well in both size and power. 相似文献